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Methods R Precision" FID# MMDist#Top 1 Top 3

Ours (B) 0.521±.002 0.807±.002 0.045±.002 2.958±.008

Ours (U) 0.514±.003 0.805±.003 0.210±.008 3.002±.009

Table 3. Ablation of bidiretionality on HumanML3D. We con-
duct an ablation study by employing a bidirectional Transformer
encoder (B) and a unidirectional Transformer decoder (U) seper-
ately as the backbone in our MoMask framework.

Ablation on bidirectionality. In Table 3, we assess the per-
formance of MoMask using a unidirectional Transformer
Decoder as the backbone (Ours (U)). In this configuration,
causal attention is employed, and the model can only attend
to previous positions in the sequence. This stands in con-
trast to the design presented in the paper, which utilizes a
bidirectional Transformer Encoder (Ours (B)). The exper-
iment results highlight the significance of bidirectionality
in the MoMask framework. Additionally, it’s worth noting
that the baseline of T2M-GPT [49] represents a state-of-the-
art unidirectional approach.
Which components are trained together? RVQ-VAE, M-
Transformer, and R-Transformer are trained independently.
RVQ-VAE is trained first and then kept frozen during train-
ing of the other two generative models.
Shared parameters in R-transformer. In the R-
Transformer, codebook embeddings (in Fig 1.a) are no
longer utilized due to observed suboptimal performance.
With V +1 (0:V ) vector quantization (VQ) level of tokens,
R-Transformer includes V input token embedding layers for
the 0:V -1 VQ levels, and V output prediction layers for the
1:V VQ levels. The tokens predicted by the j-th output pre-
diction layer become the input for the (j + 1)-th token em-
bedding layer, which proceeds to predict the next-level to-
kens. Because both the j-th prediction layer and the (j+1)-
th embedding layer handle the same token level, their linear
projection weights can be shared for efficient learning, akin
to BERT [10] and VALL-E [45].
Learning R-transformer layers. In the training process,
we independently sample a random residual quantization
(RQ) layer for each data point within a batch. Given our
batch size of 64, it’s highly likely that the sampled RQ lay-
ers in a batch cover all RQ levels. Although Eq.4 for a single
data point only involves n terms each time, the optimization
is actually conducted across all RQ levels with batch data.
Metric of diversity. Evaluation results for the ”diversity”
metric are provided in Tab. 4. It’s essential to note that
the ”diversity” metric assesses overall diversity across the
entire test set, specifically designed to detect generation of
similar content regardless of text inputs.
Numbers mismatch. All results in Table 2 (in paper) are

Datasets Real. T2M [15] MDM [42] T2M-GPT [49] MotionGPT [21] Ours

HML3D 9.503±.07 9.175±.08 9.559±.09 9.722±.08 9.528±.07 9.624±.08

KITML 11.08±.10 10.72±.14 10.84±.10 10.92±.10 - 10.78±.08

Table 4. Comparison of diversity.

based on the default setting of 18 inference steps. However,
in our subsequent sweeping experiment on inference steps
(see Figure 7), we discovered that 10 steps of inference per-
formed slightly better. Consequently, we report these final
results in Table 1 (in paper).
Discussion of higher VQ layer (codebook size, learned
contents). Table 2 indicates a constant increase in re-
construction quality with more quantization levels, though
with diminishing impact. We acknowledge that beyond a
certain point, additional quantization layers may introduce
quite minor information. The number of quantization layers
should be determined cautiously. Variable codebook sizes
for different quantization levels are worth future exploring.
Thresholding minimum confidence. Thresholding can be
an alternative approach; however, it heavily relies on the
choice of the threshold. It would be interesting to explore
dynamic threshold in the future.
Limitations. We acknowledge certain limitations of Mo-
Mask. Firstly, while MoMask excels in fidelity and faith-
fulness for text-to-motion synthesis, its diversity is rela-
tively limited. We plan to delve into the underlying causes
of this limitation in future work. Secondly, MoMask re-
quires the target length as input for motion generation. This
could be properly addressed by applying the text2length
sampling [15] beforehand. Thirdly, akin to most VQ-based
methods, MoMask may face challenges when generating
motions with fast-changing root motions, such as spinning.
Exemplar cases are presented in the supplementary videos.


