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Abstract

In this supplementary material, we mainly provide four
categories of information.
• A simple derivation of the compression ratio.
• More literature review about the vision transformers.
• Detailed experimental settings, especially the implemen-

tation details.
• More experimental results of our proposed method.

1. Derivation of the Compression Ratio
Let us recall the low-rank approximation on one matrix
multiplication operation,

WTx ≈ (UVT )Tx

= V(UTx),
(1)

where the pre-trained weight matrix W ∈ Rdin×dout and
x ∈ Rdin , U ∈ Rdin×dlr and V ∈ Rdout×dlr are low-
rank matrices. In this context, the original operation takes
O(din × dout) to run, as compared to that of the right-hand
side of the equal sign O((din+dout)×dlr). If we intend to
use a compression ratio of κ, i.e., compressing the original
model κ×, we have din × dout ∼= κ(din + dout) × dlr.
Thereafter, we can easily obtain dlr = 1

κ
din×dout

din+dout
.

We choose to use a universal κ for each matrix multi-
plication for simplicity. As a result, the total number of
parameters can be easily approximated as 1

κ . However, the
matrix rank can be affected by several factors, especially
the model depth. It is thus favorable to design an adaptive
strategy for different matrix multiplication operations. We
leave this exploration as future work.

2. Related Work on Vision Transformers
The past few years have witnessed the pervasive prosperity
of Transformers in the language realm [6, 31]. This wave
was first initiated to vision by Vision Transformer (ViT) [7],
wherein each image is evenly split into patches, conforming
to the inputs of a text-based Transformer model. Due to its
superior performance, the following studies expanded this

success from image classification [7, 29] to more challeng-
ing object detection [4, 8, 44], segmentation [35] and 3-D
vision domains [22, 42].

One advantage of Transformers over the traditional
CNNs is their weak inductive bias and capture of long-range
dependencies from the self-attention operation [12, 23].
Though this merit is widely acknowledged by the existing
literature, researchers have also endeavored to explore the
viability of coupling Transformers and CNNs. A typical im-
plementation is to resort to the convolutional embedding of
patch tokens, followed by the self-attention action on the ex-
tracted features [32, 33]. In this way, the locality and global
semantics are simultaneously modeled to yield improved re-
sults. Other common strategies in CNNs, such as hierarchi-
cal architecture [19] and pooling [41] are also extensively
studied and demonstrate certain improvements in model
performance, efficiency, and image throughput. In addition
to the pure vision scope, some recent work has introduced
vision Transformers to the vision-language tasks [25, 28].
For instance, [15, 17, 28] first pre-train a general model
on large-scale image-text pair datasets [26, 27], and then
transform it to downstream cross-modal retrieval [18], vi-
sual question answering [1], and visual entailment [36].

3. Experimental Setting
For all the experiments, we pre-trained and fine-tuned our
model on four NVIDIA RTX A5000 GPUs. Due to resource
constraints, we employed a smaller batch size for each re-
spective baseline. We measured the number of model pa-
rameters and FLOPs with the open DeepSpeed toolkit1.
In addition, we also leveraged public code frameworks,
i.e., HuggingFace2 and MMCV3, for simple computation
of FLOPs. Pertaining to this experiment, the batch size for
vision-only and vision-language models is set to 1 and 32,
respectively.

3.1. Common Efficient Learning Baselines

We evaluated our PELA against four efficient baselines:
TinyBERT [14] and MaskAlign [38] from the feature-

1https://www.deepspeed.ai/.
2https://huggingface.co/.
3https://mmcv.readthedocs.io/en/latest/.



based knowledge distillation group; ToMe [2] - a recent
strong vision token pruning approach; and LoRA [13],
which is a widely used parameter-efficient transfer learning
baseline. For TinyBERT, MaskAlign, and ToMe, we care-
fully tuned their hyperparameters so that the distilled model
has a similar number of parameters or FLOPs to ours for a
fair comparison.

TinyBERT [14] investigates various knowledge distillation
techniques applied to the original BERT model [6]. These
techniques involve aligning different components such as
logits, embedding matrices, hidden states, and attention ma-
trices. However, in our experiments, we focus on the align-
ment of hidden states and attention matrices, as the ViT
models are unable to incorporate the other two techniques
effectively. In particular, for the student model, take the
compression ratio of 2 as an example, we kept six layers
out of the original twelve layers of the ViT model.

MaskAlign [38] introduces a highly effective feature-based
knowledge distillation approach. The key to MaskAlign is
the Dynamic Alignment (DA) module, which specifically
addresses the issue of input inconsistency between the stu-
dent and teacher models. In our implementation, we follow
a similar approach as TinyBERT to construct the student
model.

ToMe [2] first identifies similar tokens and then merges
them to reduce the number of vision tokens. We used their
official public code to implement the proportional attention
mechanism in the self-attention module of ViT. In our ex-
periments, we carefully tuned the number of tokens reduced
per layer r to make sure that the FLOPs are similar to our
method. Additionally, following the practice of ToMe, we
set “prop attn” to be true to ensure that merged tokens can
receive proportional attention.

Note that due to the hierarchical design of the Swin-
Transformer architecture [19], it is not feasible to apply the
token merging technique from ToMe [2], which randomly
merges tokens. Additionally, the token reduction process
is incompatible with the UperNet architecture, as it neces-
sitates a fixed number of tokens in different layers. Con-
sequently, we were unable to provide detailed comparisons
with these methods.

LoRA [13] is a representative method in the realm of
parameter-efficient transfer learning. It introduces two low-
rank matrices to the original fixed large model and focuses
on fine-tuning only these two matrices. By doing so, Lora
achieves remarkable results across a diverse range of down-
stream fine-tuning tasks, and in some cases, even surpasses
the performance of the conventional full fine-tuning strat-
egy. To optimize efficiency, we maintain the rank of Lora at
32.

3.2. Vision-Only Downstream Tasks

Semantic Segmentation. The UperNet framework [34]
is adopted upon the backbone for semantic segmentation
following [19]. We fine-tuned our low-rank model on the
ADE20k [43] dataset and reported the mIoU metric on the
validation set.
Object Detection. We also tested the object detection per-
formance of our method on the MSCOCO [18] dataset. In
particular, we employed the Cascade Mask R-CNN [3, 11]
framework with Swin-Base as the backbone due to the
availability of source codes for a fair comparison.

3.3. Vision-Only Baseline Models

Pre-training. To pre-train our models, we maintained most
of the settings from DeiT-Base [29], Swin-Base [19], and
DeiT-III-Large [30], with the exception of the following
hyper-parameters. Due to resource limitations, we reduced
the number of pre-training epochs from 300 to 50, which al-
ready yields satisfactory performance. For DeiT-III-Large,
we decreased the batch size to 32 images per GPU and ad-
justed the learning rate accordingly. Pertaining to the loss
weights hyper-parameters α and β, we kept them as 1.0 and
10.0 for DeiT models, respectively; while for Swin-Base,
we set both to 1.0.
Downstream Finetuning. To perform semantic segmen-
tation, we utilized the MMSegmentation framework and
employed the UperNet [34] architecture for accurate seg-
mentation. The input resolution is set to 512×512. We
used a batch size of 4 on 4 GPUs, resulting in an effec-
tive batch size of 16 for DeiT-Base and Swin-Base. While
for DeiT-III-Large, the batch size is limited to 2 on 4 GPUs.
We trained the model using the AdamW [20] optimizer for
160,000 steps.

Regarding object detection, we utilized the MMDetec-
tion framework and adopted the Cascade Mask RCNN [3,
11] as our detection head, which provides superior accuracy
for detecting objects in complex scenes. The input resolu-
tion of each image is set to 1,024×1,024. We fine-tuned the
model using a 1× schedule, consisting of 12 epochs in to-
tal. The learning rate was decayed by factors of 10 and 100
at the 8-th and 11-th epoch, respectively, to help the model
converge more effectively.

3.4. Vision-Language Downstream Tasks

Image-Text Retrieval is composed of two sub-tasks:
image-to-text retrieval (TR) and text-to-image retrieval
(IR). We justified the model performance on Flickr30K [24]
and MSCOCO dataset [18] using the recall metric R@n,
i.e., truncated top-n results is employed.
Visual Entailment (SNLI-VE) [37] predicts the relation-
ship of an image-text pair with three classes: entailment,
neutral, or contradictory. We followed previous litera-
ture [5, 17] to treat this task as three-way classification.
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(a) Early compression

(c) Late compression

(b) Intermediate compression

 Parameters close to output are 

more important -> a > b > c?

 The actual result -> c > b > a

Figure 1. Illustration of applying low-rank approximation on dif-
ferent positions of a typical ViT model.

Visual Grounding (VG) localizes the accurate regions
based on a textual query. We conducted experiments on
the RefCOCO+ dataset [39], wherein no bounding box an-
notations are available (weakly-supervised setting). Dur-
ing inference, we extended Grad-CAM to obtain heatmaps
and leveraged them to rank the detected proposals provided
by [40]. Specifically, we first predicted the region referred
to by the given query. We estimated the accuracy accord-
ing to the intersection over union (IOU) ratio between the
true and predicted bounding box, and reported this metric
on three settings [39]: Val, TestA, and TestB.
Visual Question Answering (VQA). We used the popular
VQA v2 dataset [9] and adopted accuracy as the key met-
ric [10]. Due to the submission number limitation of the
leaderboard website, we merely evaluated the baseline and
our model and reported the final results once.

3.5. Vision-Language Baseline Model

Pre-training. We followed most of the settings with
ALBEF [17]. Specifically, we pre-trained our model on
four publicly available large-scale datasets: MSCOCO cap-
tion [18], Visual Genome [16], SBU [21] and Conceptual-
Captions [27]. In total, there are 4M image-text pairs of
these datasets.

We adopted the BERT-base model for text processing
and ViT-base for visual feature extraction. We pre-trained
the model for 10 epochs using a batch size of 128 on 4
GPUs. During pre-training, we took random image crops
of resolution 256×256 as input, and also applied random
augmentation to maintain visual feature diversity. For fine-
tuning, we increased the image resolution to 384×384. In
addition, the size of the queue used for image-text con-
trastive learning is set as 65,536 following ALBEF [17].
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Figure 2. Model performance of different low-rank approximation
positions on two DeiT models.

We also fixed the loss weights α and β as 0.1 and 1.0 during
pre-training, respectively.
An interesting finding. It is worth noting that we found
one special case when applying low-rank approximation on
vision-language models. In general, the word embedding
layers account for arguably the largest part of the param-
eters. Nevertheless, using low-rank approximation on the
word embedding matrix leads to a computation-parameter
dilemma. On the one hand, this operation will decompose
the matrix with a large rank into two low-rank matrices, re-
sulting in fewer parameters in a Transformer model. On the
other hand, it cannot achieve efficient computation as the
process from input tokens to word embedding is actually a
look-up action rather than matrix multiplication! In view of
this, we omitted the approximation on the word embedding
layer in our implementation.
Down-stream fine-tuning. We strictly followed the exper-
imental settings used by ALBEF and kept most of them un-
touched. We employed a smaller batch size and reproduced
the results of the baseline model.

4. Experimental Results
Compression on different positions. We conducted ex-
periments to test whether the low-rank approximation posi-
tion affects the final model performance. To this end, we
split a ViT model into three stages and applied low-rank ap-
proximation to every single stage (as shown in Fig. 1). The
results are shown in Fig. 2. We can see that compressing
deeper layers often results in worse model performance.
More knowledge distillation choice. We also studied other
knowledge distillation choices during our trial-and-error
stage. Specifically, we introduced the logit-based KD ob-
jective into our model and trained it with the other loss func-
tions. From the results in Table 1, we can see that this loss
does not lead to more performance improvements. We be-
lieve this is because the feat-based KD already aligns the
feature distribution between the large pre-trained model and
our low-rank model, thereby involving more objectives does
not bring more benefits.
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Figure 3. Performance comparison of three models and statistics of the instance-level feature similarity.

Table 1. Influence of the feat-based and logit-based knowledge
distillation objectives.

Variant DeiT-Base [29]

Original 80.25

+ feat-KD 80.96
+ logit-KD 80.85

Qualitative results. Fig. 3 demonstrates the performance
comparison of the original model, the directly low-rank
model, and our final PELA. We can observe that the com-
pressed low-rank model does not effectively learn instance-
level discriminative representation. One possible reason is
that the learned features after low rank are confined in a
narrow feature space (the similarity of the features is dras-
tically increased as shown in the figure). After our PELA
method, the feature similarity of each class becomes more
consistent with that of the original model, thereby leading
to improved model performance.
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