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6. Details of Training a Segmenter
Training via point Annotation. For methods [41, 48, 64],
they adopt point-segmentation map P as the target of the
segmenter, as formulated in Equation (7).

Lpoi = −
N∑
i=1

(H,W )∑
(h=1,w=1)

p(h,w) log p̂(h,w), (7)

where N is the batch size, H and W are the height and
width of image xi, respectively. p(h,w) represents the
value of position (h,w) in binarized ground-truth density
map Pi, and p̂(h,w) is the corresponding predicted value.
To this end, we build the mPromptpoi under the loss Lpoi,
formulated as

L = Lden + λsLpoi, (8)

where λs is a super-parameter to balance the two losses.
As elucidated in scratch, mPromptpoi exhibits a chal-

lenge in assimilating spatial information. This limitation
primarily stems from the fact that the targets for both the
segmenter and regressor are manually created from dot an-
notations, which intrinsically do not convey any spatial in-
formation.
Training via Box Annotation. To strengthen the seg-
menter’s ability in integrating spatial information, we pre-
train it using head-box annotations of NWPU [57] dataset,
and generate pseudo mask (mp) of all datastes for mu-
tual prompt learning. Concretely, suppose Bi,v is the v-
th box annotation in the image xi and its annotation is
(xl, yl, xr, yr) representing upper-left corner and lower-
right corner. The head box region Ri,v is defined as:
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(9)

Then the ground-truth box-segmentation map Si for pre-
training the head segmenter is defined as

Si = ∪Vi
v=1R

i
v, (10)

where Vi denotes the number of boxes in image xi and ∪
indicates the union operator. In this case, for s(h,w) which
indicates the value of position (h,w) in the Si , we have

s(h,w) = I ((h,w) ∈ Si) . (11)

The function I(cond) is the indicator function, which is
equal to 1 only if the condition holds, and 0 otherwise. We

utilize Lbox to encourage the segmenter to predict a value
of 1 for positions falling within any heads, and a value of 0
for positions outside them. Formulately, Lbox is defined as

Lbox = −
N∑
i=1

(H,W )∑
(h=1,w=1)

s(h,w) log ŝ(h,w), (12)

where N is the batch size, H and W are the height and
width of image xi, resp. s(h,w) represents the value of
position (h,w) in Si, and ŝ(h,w) is the corresponding pre-
dicted value.

Similar to Lpoi and Lbox, Lseg in manuscript is imple-
mented on density map (ŷ) and the pseudo mask (mp) gen-
erated by the pretrained segmenter. For regressor, MSE
loss: Lden = 1

2N

∑N
i=1 ∥Ŷi − Yi∥22 is used. Ŷi is the pre-

dicted density map and N the batchsize. Finally, mPrompt
is trained with Lseg as follows:

L = Lden + λsLseg (13)

where λs balances the two losses.

7. Details of Extension to Foundation Model
The broadly acknowledged foundational model SAM [25]
for image segmentation functions at the pixel level, simi-
lar to crowd counting tasks based on density map method.
Therefore, SAM has been selected as the foundation model
for extending our mPrompt approach, aiming at modifying
the hidden representations of a frozen pre-trained model.
The position of adapter. The pre-trained SAM’s image en-
coder, equipped with adapter modules identical to the scaled
parallel adapter [15], has supplanted the backbone of our
previous architecture. We fixed the parameters of the image
encoder, making only a few parameters trainable, including
the adapter modules, regressor and segmenter. Specifically,
the image encoder is composed of 12 stacked blocks, each
containing two types of sublayers: multi-head self-attention
(MHA) and a fully connected feed-forward network (FFN).

Adapters are utilized to modify the outputs of MHA
and FFN in the transformer blocks. The output from the
last adapter module serves as the input for the segmenter.
Throughout this process, the adapter modules function as a
context prompt (akin to mask prompts in SAM), referred to
here as learnable prompt modules.
The performance of training with adapter. To further val-
idate the potential performance enhancement of mPrompt
on foundation model, we evaluated its effectiveness on SHA
under the same architecture (image encoder + adapter + re-
gressor + segmenter), but with varied training strategies.



These strategies include full fine-tuning without mutual
prompt learning, adapter training without mutual prompt
learning, and learnable prompt modules with mutual prompt
learning. As presented in Table 5, it is evident that our
method offers significant improvement opportunities when
applied to foundational model.

full ft adapter mPrompt
54.8 56.2 53.2

Table 5. Performance on SHA about MAE, when adopting differ-
ent training strategies.

8. Analysis of Convergence Speed via Context
Constraint

We have introduced Lcon as a mechanism to guide non-
zero values of the density map (ŷ) to fall within mask (m̂),
a crucial factor for achieving rapid convergence of the re-
gressor. To validate this assertion, we conducted an experi-
ment comparing convergence speed based on the inclusion
or exclusion of Lcon. Figure 9 displays the Mean Abso-
lute Errors (MAEs) and Mean Squared Errors (MSEs) of
the initial 100 epochs during the training process on SHA.
The green curve represents the model trained without Lcon

(λcon = 0), while the blue curve signifies the model trained
with λcon = 1. Upon examining these results, it becomes
clear that both the MAEs and MSEs of the model trained
with λcon = 1 are consistently lower than those of the
model trained without it. These findings underscore that
the incorporation of λcon effectively aids in achieving faster
convergence of the regressor.
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Figure 9. MAEs and MSEs of λcon = 0 and λcon = 1.

9. Hyper-parameters
We investigate hyper-parameters including K in K-NN,
epoch κ to begin online point prompt, and loss weights λd,
λs, λc. Grid-search is infeasible due to computational con-
straints. Initially, we explore K while fixing other settings
at κ = 0, λd = λs = λc = 1. Fig. 10 reveals K = 3 as op-
timal, yielding the lowest MAE of 55.0. Using K = 3, we
find κ = 50 reduces MAE to 53.3. Two conclusions can be

drawn: 1) An appropriate K can reduce MAE by approxi-
mately a gap of 1. For very large K values (e.g., K = 5),
the performance is similar to K = 0. This occurs because
a large K means mK covers nearly the entire image, ren-
dering mK almost ineffective. 2) κ = 50 delivers the best
MAE, indicating the learning of regressor is fast due to the
deployment of Lcon.

In Table 6, our approach, even when applied with a basic
hyper-parameter search, successfully reduces MAE to 52.5.
This is achieved with the settings λd = 1, λs = 0.5, and
λc = 0.5. We further have the following two conclusions:
1) Employing only λd, the network still reduces MAE to
MAE 58.4, a marginally performance gain compared to
noPromptreg . This affirms the rationality of incorporating
the attention as implicit spatial context from segmenter to
regressor. Additionally, when λs and λc are incorporated
into the network learning process, we observe further per-
formance gain, underlining the effect of these elements. 2)
Upon examining the last three row in Table 6, we confirm
that appropriate selection of loss weights can further help
enhance performance.

10. Visualization of mPrompt on Tackling
Point Annotation Variance in Highly Con-
gested Scenarios

In this section, we delve deeper into the validation of
mPrompt’s efficiency in addressing point annotation vari-
ance in highly crowded scenarios. Figure 11 exhibits the
respective density maps as predicted by mPrompt‡ and
noPromptreg (named “baseline” in the image). In the pre-
sented graphic, we have highlighted certain regions using
color-coded boxes for ease of understanding. The areas
shaded in blue represent the background regions, wherein
noPromptreg exhibits high activations, contrasting with
mPrompt‡, which does not. In the regions designated by red
boxes, we demonstrate the head areas where noPromptreg
displays inaccurate density blobs, whereas mPrompt‡ suc-
cessfully predicts accurate blobs. The white boxes highlight
the head areas that noPromptreg failed to identify correctly,
while, conversely, mPrompt‡ delivers correct activations.
Lastly, the yellow boxes underscore the head regions where
noPromptreg exhibits activations displaced from the center
of the corresponding boxes. In contrast, mPrompt‡ gener-
ates density blobs precisely at the center of the heads. In
summary, for all these four identified situations, mPrompt‡
consistently outperforms noPromptreg in accurately pre-
dicting head density blobs.

11. Visualization of mPrompt on Predicting
Density Maps

In the main manuscript, we have previously illustrated
a selection of examples from the ShanghaiTech Part A
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Figure 10. Evaluation of K and κ on SHA.

λd λs λc MAE

1 0 0 58.4
1 1 0 55.9
1 1 1 53.3
1 0.5 1 53.7
1 1 0.5 53.5
1 0.5 0.5 52.5

Table 6. Regularization factors.

Count: 320

Count: 282.6Count: 265.4

(a)  Input Image (b)  GT

(c)  Baseline (d)  Ours

Figure 11. Visualization of density maps. (Best viewed in color)

(SHA) dataset. We now expand on this by presenting ad-
ditional visual results derived from ShanghaiTech Part A
(SHA), ShanghaiTech Part B (SHB), UCF-QNRF (QNRF),
and NWPU Crowd (NWPU) datasets, corresponding to
their respective test samples. As can be observed in Fig-
ures 12 13 14 15, mPrompt‡ consistently outperforms
noPromptreg in generating superior density maps. This su-
periority is apparent across various regions, whether dense

or sparse, in each of the SHA, SHB, QNRF, and NWPU
datasets. Thus, mPrompt‡ demonstrates marked improve-
ment in performance across different types of crowd scenes.



Count: 390.0 Count: 378.4

Count: 369

(a)  Inp ut Image (b)  GT
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Figure 12. Visualization of predicted density maps from SHA.
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Figure 12. Visualization of predicted density maps from SHA.
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Figure 13. Visualization of predicted density maps from SHB.
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Figure 13. Visualization of predicted density maps from SHB.
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Figure 14. Visualization of predicted density maps from QNRF.
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Figure 14. Visualization of predicted density maps from QNRF.
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(a)  Inp ut  Image (b)  GT

(c)  Baseline (d)  Ours

Figure 15. Visualization of predicted density maps from NWPU.
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Figure 15. Visualization of predicted density maps from NWPU.
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