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This document contains the supplementary materi-
als of Uncertainty-aware Action Decoupling Transformer
(UADT). We first include the implementation details (§ 1).
Then we make a comparison of computational efficiency
(§ 2). Next, we show the ablation study of decoder loss
(§ 3), followed by the qualitative results (§ 4). Finally, we
summarize the full inference workflow of UADT (§ 5).

1. Implementation Details
In this section, we provide the implementation details of
UADT including feature extraction (§ 1.1), model architec-
ture (§ 1.2), and fusion strategies (§ 1.3).

1.1. Feature extraction

1.1.1 EPIC-KITCHENS 100

RGB features. We first perform a pre-processing of raw
frames. The frames are center cropped of 224× 224. Then
we applied a normalization with mean [0.45, 0.45, 0.45] and
standard deviation [0.25, 0.25, 0.25]. No data augmenta-
tions are applied. We used the MViT-b [4] as the back-
bone for feature extraction. Specifically, we used Kinetics-
400 [1] and Kinetics-700 [2] to pretrain the backbone for
action classification. For Kinetics-400, we set the “frame
length × sample rate” as 16 × 4. The frames are extracted
at 30 FPS. 16 frames selected 4 frames apart are used to
train the backbone. This leads to 2 seconds for each clip at
8 FPS. For Kinetics-700, we set the “frame length × sam-
ple rate” as 32 × 3. The frames are also extracted at 30
FPS. 32 frames selected 3 frames apart are used to train the
backbone.
Optical flow and object features. In the main paper, we
also include additional modalities to further boost the per-
formance of UADT. Followed the procedures in [6], the op-
tical flows are extracted by TVL1 algorithm [16]. Then
a pretrained Batch Normalized Inception (BNInception)
CNN is used to extract features. For the object-based fea-
tures, a Faster R-CNN [9] pretrained on EPIC-KITCHENS-
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55 [3] is used to detect the active object at each frame. The
class-based score is used as the features. We used the re-
sults from RU-LSTM (https://github.com/fpv-
iplab/rulstm). When performing the multi-modality
fusion, we simply concatenate feature vectors of different
modalities at each time step.

1.1.2 EGTEA Gaze+ and 50-Salads

EGTEA Gaze+. A pretrained TSN [14] is used to extract
features. The TSN is pretrained on ImageNet-1k. Frames
are extracted at 24 FPS. We followed the procedures in [6]
(https://github.com/fpv-iplab/rulstm).
50-Salads. Following prior work [5, 12], we used the
I3D [1] for feature extraction. Frames are extracted at 30
FPS and downsampled to 15 FPS. 3D convolution is used
to capture the spatio-temporal dependencies among differ-
ent frames.

1.2. Model architecture

Encoders. The encoders of UADT are based on the trans-
former encoder [13]. Given the feature vectors F t =
{f1, ...,f t}, a positional encoding is first added onto F t

to keep the original ordinal information. Each input to-
ken is linearly projected to queries, keys, and values. Then
we perform multi-head attention among the inputs. Specifi-
cally, we set the number of heads as 4. After the multi-head
attention, the intermediate embeddings are batch normal-
ized and go through the feed forward network. Different
from deterministic transformer, the feed forward networks
in UADT encoders are probabilistic. Specifically, we as-
sume the parameters follow Gaussian distributions. This
is because Gaussian distribution has strong modeling capa-
bility for different distributions and we can easily train the
model through backpropagation using reparameterization
trick [11]. When performing the forward process, we can
simply sample the parameter θ as θ = µ+ ϵσ, ϵ ∼ N (0, 1),
where µ is the learned mean, σ is the learned standard de-
viation, and ϵ is a random variable that follows the unit nor-
mal distribution. In this way, the model can generate dif-
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ferent outputs from the same input. The outputs are used
to quantify the predictive uncertainty. In general, we stack
two encoder layers to form both the verb encoder and noun
encoder. To improve efficiency, only the last layer needs
sampling. The output embedding of the last layer are used
to compute Lfeat. Meanwhile, each output embedding goes
through a fully connected network to make action anticipa-
tion at each time step.

Decoders. The verb/noun decoder contains a cross-
attention layer and self-attention layers. The cross-attention
layer aims to leverage the embeddings generated by the en-
coders to help the anticipation. The cross-attention layer
takes both the initial features F t extracted by the backbone
and the embeddings Znt/Zvt from the encoder and ex-
change the information with each other. Uncertainty masks
are multiplied to F̂ t to filter out redundant and irrelevant
information. In this work, we only use one cross-attention
layer to incorporate information from the encoders. Embed-
dings from the future at each time step are masked to ensure
the anticipation property. After the cross-attention layer, we
stack two self-attention layers that are identical to the en-
coder. The output embeddings from the final self-attention
layer are used to compute Lfeat of the decoder and action
anticipation at each time step.
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Figure A1. Illustration of fusion strategies.

1.3. Fusion strategies

In the ablation study part of the main paper, we imple-
mented a few fusion strategies for comparison including
early fusion, late fusion, and attention-based fusion. The
overall frameworks of them are shown in Figure A1. Here
we include the implementations details of each strategy.

Early fusion. The early fusion simply combines the predic-
tions from the verb encoder and noun encoder. Since the en-
coders also make verb/noun anticipation at each time step,
the prediction of next (verb, noun) pair is available before
finishing the forward process through decoders. Specifi-
cally, the verb prediction from the verb-to-noun encoder and
noun prediction from the noun-to-verb encoder are com-
bined as the action anticipation. We also perform the same
post-processing procedures as UADT to correct implausible
(verb, noun) pairs.

Late fusion. The late fusion combines the initial predic-
tions from the verb decoder and noun decoder. Specifically,
the noun prediction of the verb-to-noun model and verb pre-
diction of the noun-to-verb prediction are combined as the
action prediction. The post-processing process is also ap-
plied to late fusion.

Attention-based fusion [6]. The early fusion and late fu-
sion are relatively rigid. We followed the design as the
modality attention in [6]. A fully-connected network is
jointly trained with the model to select the predictions from
both verb-to-noun and noun-to-verb model. Specifically,
learnable attention masks are applied on element-wise prod-
uct. The noun predictions of the verb-to-noun decoder and
noun-to-verb decoder are combined. The verb predictions
of the noun-to-verb decoder and verb-to-noun encoder are
combined. By applying the attention, the model automati-
cally identifies reliable predictions from both models. We
also perform the post-processing since the attention-based
fusion may also output implausible (verb, noun) pairs.

2. Computational Efficiency

Computational efficiency is an important factor of deploy-
ing action anticipation algorithms to real-world applica-
tions. In this section, we discuss the computational effi-
ciency of UADT (§ 2.1), the training cost (§ 2.2), and un-
certainty sampling to latency (§ 2.3).

2.1. Efficiency

An efficiency comparison is shown in Table A1. From the
comparison, UADT has less model parameters and infer-
ence latency than most methods. The inference latency in-
cludes both the feature extraction time of backbone and in-
ference time of model.



Method Init Training # Parameters Inference Latency Top-5 Recall
(×106) (ms) Verb Noun Action

AVT [8] IN21k - 378 420 30.2 31.7 14.9
MeMViT [15] K400 - 59 160 32.8 33.2 15.1
RAFTformer [7] K400+IN1k - 26 40 33.3 35.5 17.6
UADT (ours) K400 Two-stage 47 105 35.2 38.5 18.8
UADT (ours) K400 E2E-one-stage 47 105 37.3 40.1 19.3
UADT (ours) K400 E2E-two-stage 47 105 37.4 40.4 19.5
MeMViT [15] K700 - 212 350 32.2 37.0 17.7
RAFTformer [7] K700 - 26 110 33.7 37.1 18.0
RAFTformer-2B [7] K700+IN1k - 52 160 33.8 37.9 19.1
UADT (ours) K700 Two-stage 47 127 38.2 41.4 20.3
UADT (ours) K700 E2E-one-stage 47 127 41.2 42.8 21.1
UADT (ours) K700 E2E-two-stage 47 127 41.5 43.0 21.2

Table A1. Efficiency comparison on EK100. UADT maintains relatively small number of model parameters compared to most methods.
Inference latency is measured on a Nvidia Tesla V100 GPU.

Method Init Training GPU Hours

UADT K400 Two-stage 31
UADT K400 E2E-one-stage 52
UADT K400 E2E-two-stage 46
UADT K700 Two-stage 35
UADT K700 E2E-one-stage 53
UADT K700 E2E-two-stage 48

Table A2. Training cost comparison on EK100. The end-to-
end (E2E) training results in better performance but requires more
training time.

2.2. Training cost

In the main paper, we show that UADT can be trained
by a two-stage strategy of end-to-end training. We make
a training cost comparison in Table A2. The GPU hours
are reported on a Nvidia RTX 3090 Ti GPU. Compared to
most other methods, UADT has a relatively small number
of model parameters and training cost. Although UADT
and RAFTformer [7] have similar transformer-based archi-
tectures, UADT costs more training times due to the uncer-
tainty sampling. In addition, end-to-end (E2E) training has
higher training cost and better performance. The reason of
longer training time is that E2E training also trains the en-
coders and takes more time to converge.

2.3. Uncertainty sampling to latency

UADT requires sampling to quantify the uncertainty, insuf-
ficient sampling may affect the accuracy of uncertainty es-
timation and further degrade the anticipation performance.
On the other hand, increasing the number of samples causes
more computation cost. To find the optimal trade-off, we
study the relationship among performance, samples times,
and inference latency. The comparison is plotted in Fig-
ure A2. From the plot, the latency increases as the num-
ber of samples increases since the forward process after the
sampling are repeated for more times.

Figure A2. Uncertainty sampling and latency. The latency in-
creases as more sampling are performed. Latency is measured on
a 16G Nvidia Tesla V100 GPU with K400 features.

3. Ablation Study of Decoder Loss

The total decoder loss function (Eq. 1) contains three terms:
Lnext for next verb/noun anticipation, Lfeat for feature an-
ticipation, and Lverb/noun for past verb/noun anticipation.
To obtain the optimal hyper-parameters λ1 and λ2, we did a
ablation study and results are shown in Figure A3. Based on
the experiment results, we empirically choose λ1 = 5 and
λ2 = 0.1 since this setting generates the best performance.
The abation also demonstrates the necessity of Lverb/noun

since the performance drops if we set λ2 = 0.

Lde = Lnext + λ1Lfeat + λ2Lverb/noun (1)

4. Qualitative Results

Here, we provide a few qualitative examples of UADT ac-
tion anticipation on different datasets in Figure A4.



(a) λ1 (b) λ2

Figure A3. Ablation study of decoder loss function on EK100
val. We set λ1 = 5 and λ2 = 0.1 since they give the best perfor-
mance.
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Figure A4. Qualitative examples of UADT prediction. The
green (verb, noun) pair indicates the prediction and red ones are
incorrect predictions.

Algorithm A1 Inference workflow

Input: {Xt ∈ Rt×H×W×C}: test input
Output: {ŷt+tf }: predicted action label

1: Extract F t from Xt by a backbone
2: Make predictions V̂ t and N̂ t

3: Compute anticipated features F̂ t

4: Compute encoder uncertainty Ue by Eq. 5
5: Compute uncertainty-masked features F̂ ′

t

6: Generate intermediate embeddings Znt and Zvt

7: Cross-attention between Znt/Zvt and F̂ ′
t

8: Predict V t and N t

9: Post-processing by Eq. 13
10: return {ŷt+tf }

5. Inference Workflow

During the inference, parameters besides the probabilistic
feed forward networks are fixed and the input go through the
encoders and decoders to generate the output. The inference
workflow is summarized as Algorithm A1.

Architecture
Top-5 Recall

Verb Noun Action
Decoder [53] 33.2 34.9 17.1
cross-self 33.1 34.4 16.9
self-cross 34.1 36.9 18.0
self-cross-self 35.2 38.5 18.8

Table A3. Ablation study of decoder architecture. The results
are obtained with K400 features.

Method Overall Unseen Kitchen Tail Classes
Verb Noun Act Verb Noun Act Verb Noun Act

AVT++ 25.6 28.8 12.6 20.9 22.3 8.8 19.0 22.0 10.1
[67] 20.7 31.8 14.9 16.2 27.7 12.1 13.4 23.8 11.8
[25] 30.1 34.1 15.4 - - - - - -
UADT-b 35.8 37.6 17.0 33.8 36.9 16.6 31.6 32.7 12.9
UADT 40.3 43.1 18.2 39.9 (+6.1) 42.4 (+5.5) 17.3 36.8 (+5.2) 35.0 (+2.3) 14.3

Table A4. Experiment results on EK100 test set with K700
RGB features. “b” denotes base version without uncertainty mod-
eling.

6. Ablation Study of Decoder Architecture De-
sign

For the self-cross-self design in the decoder, we replaced it
with self-cross, cross-self, and original transformer decoder.
A comparison on EK100 is shown in Table A3. The original
transformer decoder makes the prediction in an autoregres-
sive way, which may not be ideal for incorporating encoder
information. Also, the self attention is necessary before the
cross attention as the input features need to be mapped to a
subspace that is close to the encoder output.

7. Experiment Results on EK100 Test set
We include the results on EK100 test set with K700 RGB
features in Table A4. Our UADT outperforms both its
base version without uncertainty modeling and prior works,
hence demonstrating the effectiveness of our model espe-
cially for improving verbs and nouns in unseen and low-data
regimes, aligning with our uncertainty modeling objectives.

8. Effectiveness of Cross-Attention
We trained the model solely for verb/noun prediction with-
out cross attention. The results on EK100 are shown in Ta-
ble A5. We remove the uncertainty modeling in NtV and
VtN for fair comparisons. The NtV/VtN outperforms the
Verb/Noun model, which indicates the cross-information
helps the task.

9. Uncertainty Modeling
In general, our novelty lies in how to adapt uncertainty for
anticipation task. First, [10] models the distributions of at-
tention scores of transformer because it aims at capturing
the dependencies among sub-actions of a complex action.



Method Top-5 Recall
Verb Noun Action

verb-only 30.1 - -
noun-to-verb 31.7 - -
noun-only - 31.3 -
verb-to-noun - 35.5 -
verb+noun - - 14.9
NtV+VtN 33.2 36.5 18.0

Table A5. Comparison with no cross-attention models.

Method Init Top-5 Recall
Verb Noun Action

UADT+[10] K400 34.5 37.3 18.1
UADT 35.2 38.5 18.8
UADT+[10] K700 36.3 40.0 19.4
UADT 38.2 41.4 20.3

Table A6. Comparison with uncertainty modeling in [29].

Differently, we model the distributions of parameters of the
feed-forward layers to model all past observation for ac-
tion anticipation. Second, the uncertainty in [10] is used to
weigh training data based on their frequency to balance the
training. In our work, the uncertainty is mainly used for se-
lecting reliable features from the encoder to better serve the
decoder. We replaced the attention layers of UADT with
score-based layers in [10] and compare with the original
one with RGB features on EK100-val. The results in Ta-
ble A6 demonstrate our uncertainty modeling works better
for anticipation task.
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