Unsupervised Feature Learning with Emergent Data-Driven Prototypicality

Supplementary Material
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Figure 13. The KNN density estimation on MoCo [18] features of
MNIST [25]. The shades of color represent the density value: the
darker the color, the higher the density.

7. More Details on K-NN Density Estimation on
MNIST

Feature Extraction: We use a LeNet [26] without classifier
as the encoder and follow the scheme of MoCo [18] to train
the feature extractor. We run the training for 200 epochs and
the initial learning rate is 0.06. We use a cosine learning rate
scheduler [29].

Visualization: Figure 13 visualize the KNN density esti-
mation on MoCo [18] features of MNIST [25]. The output
features have the dimension of 64. To visualize the fea-
tures, we use t-SNE [42] with the perplexity of 40 and 300
iterations for optimization.

8. More Details on Hyperbolic Instance Assign-
ment

A more detailed description of the hyperbolic instance as-
signment is given.

Initially, we randomly assign the particles to the images.
Given a batch of samples {(x1, s1), (X2, $2), .., (Xp, ) },
where x; is an image and s; is the corresponding particle.
Given an encoder fy, we generate the hyperbolic feature
for each image x; as fp(x;) € B2, where B? is a two-
dimensional Poincaré ball.

we aim to find the minimum cost bipartite matching of
the images to the particles. The cost to minimize is the total
hyperbolic distance of the hyperbolic features to the parti-

cles. We first compute all the pairwise distances between the
hyperbolic features and the particles. This is the cost matrix
of the bipartite graph. Then we use the Hungarian algorithm
to optimize the assignment (Figure 14).

Suppose we train the encoder fy for 7" epochs. We run the
hyperbolic instance assignment every other epoch to avoid
instability during training. We optimize the encoder fj
to minimize the hyperbolic distance of the hyperbolic
feature to the assigned particle in each batch.

9. Details of Adversarial Attacks

For adversarial attacks, we use MNIST and CIFAR 10 as
the benchmark and use FGSM [13] to attack the model. For
MNIST, we leverage an € of 0.07. For CIFARI10, as the
range of the pixel values is from 0 to 255, we leverage an e
of 8. For model training, we standardize the pixel values by
removing the mean and scaling to unit variance. Thus, the
final € on CIFARI10 is 8/(255*std), where std is the standard
deviation used for normalization.

10. Details of Baselines

Holdout Retraining: We consider the Holdout Retraining
proposed in [5]. The idea is that the distance of features
of prototypical examples obtained from models trained on
different datasets should be close. In Holdout Retraining,
multiple models are trained on the same dataset. The dis-
tances of the features of the images obtained from different
models are computed and ranked. The prototypical examples
are those examples with the closest feature distance.

Model Confidence: Intuitively, the model should be con-
fident on prototypical examples. Thus, it is natural to use
the confidence of the model prediction as the criterion for
prototypicality. Once we train a model on the dataset, we
use the confidence of the model to rank the examples. The
prototypical examples are those examples that the model is
most

11. Gradually Adding More Congealed Images

We gradually increase the number of original images re-
placed by congealed images from 100 to 500. Still, as shown
in Figure 15, HACK can learn a representation that captures
the concept of prototypicality regardless of the number of
congealed images. This again confirms the effectiveness of
HACK for discovering prototypicality.
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Figure 14. Hyperbolic Instance Assignment minimizes the total hyperbolic distances between the image features and the particles. a)
Initial assignment. b) Optimized assignment.
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Figure 15. HACK consistently places congealed images in the center of the Poincaré ball. We gradually increase the number of original
images replaced by congealed images from 100 to 500. The congealed images are marked with red dots and the original images are marked
with cyan dots.
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Figure 16. HACK consistently places congealed images in the center of the Poincaré ball in multiple runs with different random
seeds.. The congealed images are marked with red dots and the original images are marked with cyan dots.

12. Different Random Seeds 13. Emergence of Prototypicality in the Feature
Space

Existing unsupervised learning methods mainly focus on
learning features for differentiating different classes or sam-
ples [7, 19, 45]. The learned representations are transferred
to various downstream tasks such as segmentation and de-
tection. In contrast, the features learned by HACK aim at
capturing prototypicality within a single class.

We further run the assignment 5 times with different random
seeds. The results are shown in Figure 16. We observe that
the algorithm does not suffer from high variance and the
congealed images are always assigned to the particles in the
center of the Poincaré ball. This further confirms the efficacy To investigate the effectiveness of HACK in revealing
of the proposed method for discovering prototypicality. prototypicality, we can include or exclude congealed images



in the training process. When the congealed images are
included in the training process, we expect the congealed
images to be located in the center of the Poincaré ball while
the original images to be located near the boundary of the
Poincaré ball. When the congealed images are excluded from
the training process, we expect the features of congealed
images produced via the trained network to be located in the
center of the Poincaré ball.

13.1. Training with congealed images and original
images

We follow the same setups as in Section 4.3.1 of the main text.
Figure 17 shows the hyperbolic features of the congealed
images and original images in different training epochs. The
features of the congealed images stay in the center of the
Poincaré ball while the features of the original images grad-
ually expand to the boundary.

13.2. Training only with original images

Figure 18 shows the hyperbolic features of the congealed im-
ages when the model is trained only with original images.
As we have shown before, congealed images are naturally
more typical than their corresponding original images since
they are aligned with the average image. The features of
congealed images are all located close to the center of the
Poincaré ball. This demonstrates that prototypicality natu-
rally emerges in the feature space.

Without using congealed images during training, we ex-
clude any artifacts and further confirm the effectiveness of
HACK for discovering prototypicality. We also observe that
the features produced by HACK also capture the fine-grained
similarities among the congealing images despite the fact
that all the images are aligned with the average image.

14. Discussions on Societal Impact and Limita-
tions.

We address the problem of unsupervised learning in hyper-
bolic space. We believe the proposed HACK should not raise
any ethical considerations. We discuss current limitations
below,

Applying to the Whole Dataset Currently, HACK is ap-
plied to each class separately. Thus, it would be interesting
to apply HACK to all the classes at once without supervision.
This is much more challenging since we need to differenti-
ate between examples from different classes as well as the
prototypical and semantic structure.

Exploring other Geometrical Structures We consider
uniform packing in hyperbolic space to organize the im-
ages. It is also possible to extend HACK by specifying
other geometrical structures to encourage the corresponding
organization to emerge from the dataset.
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Figure 17. Atypical images gradually move to the boundary of the Poincaré ball. This shows that the representations learned by HACK
capture prototypicality. Congealed images are in red boxes which are more typical. The network is trained with both the congealed images
and original images.
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Figure 18. The representations learned by HACK gradually capture prototypicality during the training process. Congealed images
are in red boxes which are more typical. We produce the features of the congealed images with the trained network in different epochs. The
network is only trained with original images.
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