
Supplementary Material for Vanishing-Point-Guided Video Semantic
Segmentation of Driving Scenes

1. Vanishing Point Detection
We adopt a classical solution for vanishing point (VP)

detection: Hough-transform [3] on Canny-edge [1] filtered
images. The VP detection process is summarized in Algo-
rithm 1. Given a gray-scale image x with height H and
width W , we do the following to estimate the VP:

Pre-process. To make edge detection more robust, mor-
phological transform with opening (erosion followed by di-
lation) [4] is first used to denoise input images. Canny
edge filter is then implemented to get the edge map. As
the “sky” area constitutes the top part of images, we only
do Canny edge filtering for the bottom 2/3 part of images.
Next, Hough-transform is applied to the edges, achieving a
set containing the lines detected. For each line ℓ in the set,
we denote its slope (∆H/∆W) as slope(ℓ).

Line selection. Once having the Hough-lines [3], we
decide which lines are to retain or discard. We design a
criterion based on the likelihood of the lines that could be
near the VP. On the one hand, as VPs are normally located
around the center of the image, we delete the lines that are
more than dmax = 160 pixels away from the image center.
Besides, we find that most horizontal and vertical lines (e.g.,
trees, wires) do not contribute to the VP detection. As a
consequence, we delete any line ℓ from the Hough-line set
that has slope(ℓ) /∈ S, where S = (−5,−0.2) ∪ (0.2, 5) is
a pre-defined slope acceptance interval.

Cell vote. After removing undesired lines, we compute
the line intersections between line pairs. Upon obtaining
Nline lines after line selection, we would get Nline(Nline −
1)/2 intersections, notated as R. If the number of lines is
too large, we randomly sample 100 lines among them. Next,
we define several cells inside the image, where each cell is
a rectangular box, and count the Hough-line intersections in
it. In practice, we only parse cells in the lower part of the
image, as the “sky” area takes the upper part of images. Fi-
nally, we choose the cell that includes the most intersections
and return its center as the estimated VP position.

After obtaining the VP, it is still a problem to pass the VP
position to the model. As cropping operations are used in
the pre-processing pipeline, we crop the VP proximity map
along with the input frame. The cropped input frame and
proximity map are concatenated as our new input.

Algorithm 1 VP Detection

Require: gray-scale image x ∈ [0, 255]H×W , max central-
to-line distance dmax, slope acceptance interval S,
square cells inside x centered at ci = (Hi,Wi), i =
1, ..., Ncell with size L = ⌊H/4⌋

1: x← morphology opening(x, kernel = I5×5)
2: x← Canny edge(x, 50, 150, apertureSize = 3)
3: lines← Hough lines(x, ρ = 1, θ = π

180 , thres = 200)
4: c← (W/2, H/2)
5: for ℓ ∈ lines do
6: if d(c, ℓ) > dmax or slope(ℓ) /∈ S then
7: Delete ℓ from lines
8: end if
9: end for

10: R = find intersections(lines)
11: for i = 1, ..., Ncell do
12: ni ← number hits of R inside cell i
13: end for
14: iopt = argmaxi ni

15: return ciopt

The Hough-transform-based VP detection proves fast
and robust in automated driving scenarios. However, chal-
lenges arise when dealing with images featuring messy or
unclear edges. For instance, cross street scenes may exhibit
multiple VPs, while crowded pedestrian areas can introduce
noisy lines, affecting VP detection accuracy. To address
these issues, we will combine the hand-crafted VP detec-
tion method with deep learning to strike a better balance
between accuracy and inference speed in future works.

2. Additional Ablation Studies
Effect of VP proximity embeddings. The linear VP
proximity embedding is a VP-centered pseudo-depth map,
where the depth of pixel (x, y) is 1 − ∆D, ∆D ∝
max{ |y−ŷp

j |
H ,

|x−x̂p
j |

W } and (x̂p
j , ŷ

p
j) is the VP pixel coordi-

nate. Similarly, we introduce another two types of VP prox-
imity maps: power and Euclidean decreasing (see Fig. 2).
• Linear (Fig. 2b): ∆D ∝ max{∆y

H , ∆x
W }

In linear decreasing, the depth value of (x, y) is linearly

Figure 1. The VP detection pipeline. We first pre-process the input frame with morphology opening transform [4] and Canny edge filtering
[1]. Hough-transform [3] is then applied and lines that do not contribute to VP detection are discarded. Finally, cell vote is implemented to
count the intersections in each cell to determine the final VP position.

(a) original image (b) linear decreasing

(c) power decreasing (d) Euclidean decreasing

Figure 2. Different types of VP proximity map embeddings. (a)
represents the input frame, (b) is the VP proximity map with linear
decreasing. Compared with linear decreasing, the depth value in
our power decreasing map (c) drops much faster around the VP.
(d) denotes the proximity map with Euclidean decreasing, where
the image aspect ratio H

W
is not considered.

decreased according to its distance to the VP. It is fast to
compute, and is our default option.

• Power (Fig. 2c): ∆D2 ∝ max{ |∆y|
H , |∆x|

W }
In power decreasing, the square of the depth value is lin-
early decreased. It is more concentrated, but the depth
drops faster around the VP.

• Euclidean (Fig. 2d): ∆D ∝
√
(|∆y|

H)2 + (|∆x|
H)2

In Euclidean decreasing, the depth value is linearly de-
creased according to the Euclidean distance. It is circular
and isotropic, but ignores the image aspect ratio H

W .
We study the impact of above-mentioned VP proximity

embeddings in Tab. 1. Notably, VPSeg with linear VP prox-
imity embedding achieves the highest mIoU and mIA-IoU
for ACDC [5] and Cityscapes [2]. The experiments with
power and Euclidean embeddings perform slightly worse.
The possible reason is that the Euclidean decreasing does
not consider the image aspect ratio H

W . And the depth value
of power decreasing drops too fast around the VP.
Impact of the sampling coefficient ∆d. We conduct ex-
periments on different ∆d in Tab. 2. We found that ∆d = 1

Embeddings mIoU (A.)↑ mIA-IoU (A.)↑ mIoU (C.)↑
Linear 77.48 41.48 82.46
Power 77.29 41.23 82.29

Euclidean 77.33 41.16 82.35

Table 1. Ablation study of different VP proximity embeddings on
ACDC (A.) and Cityscapes (C.) with MiT-B3 [7] backbone.

∆d mIoU (A.)↑ mIA-IoU (A.)↑ mIoU (C.)↑
0 76.74 40.57 81.83
1 77.48 41.48 82.46
2 77.12 41.01 82.23
3 76.88 40.65 81.79

Table 2. Ablation study of different sampling coefficients ∆d on
ACDC (A.) and Cityscapes (C.) with MiT-B3 [7] backbone.

adequately covers fast-moving targets with good perfor-
mance. MotionVP with ∆d = 0 only samples patches lo-
cally, which is unsuitable for high-speed driving scenarios
and achieves worse mIoU and mIA-IoU. For ∆d > 1, the
performance of VPSeg drops drastically, proving that larger
∆d is redundant for our VP-guided motion estimation.
Failure cases and improvement. In scenes like round-
abouts and intersections we may have multiple vanishing
points (VPs), no VP, or VPs at infinity. Fig. 3 depicts failure
cases at roundabouts and intersections where unclear/wrong
VPs result in minor errors near the detected VP. To address
the concerns, we conduct ablation studies using the VP cell
only for images for which the confidence of the detected VP
surpasses a certain threshold (VP is used only for images in
which it is clear) to improve segmentation. Tab. 3 and Fig. 3
show that with an appropriate threshold, we can filter out
incorrect VPs images to avoid introducing irrelevant noise,
improving performance.

Figure 3. Failure cases and improvement with threshold filtering.

Thresholds mIoU (ACDC)↑ mIoU (Cityscapes)↑
No threshold 77.48 82.46

40% 77.55(+0.07) 82.50(+0.04)
50% 77.63(+0.15) 82.57(+0.11)
60% 77.58(+0.10) 82.29(-0.17)

Table 3. Ablation studies of VPSeg on ACDC and Cityscapes with
MiT-B3 backbone for different filtering thresholds.

Training Set mIoU (ACDC)↑ mIoU (Cityscapes)↑
ACDC 77.48 (76.74 w/o MotionVP) 69.17 (67.47 w/o MotionVP)

Cityscapes 62.27 (59.33 w/o MotionVP) 82.46 (81.83 w/o MotionVP)
Both 78.01 (77.31 w/o MotionVP) 82.92 (82.35 w/o MotionVP)

Table 4. Ablation studies of VPSeg with MiT-B3 backbone under
different cross-dataset settings.

Training Set Iters (MotionVP)↓ Iters (w/o MotionVP)↓
ACDC 124k 140k

Cityscapes 144k 156k
Both 176k 188k

Table 5. Iterations to converge for VPSeg with MiT-B3 backbone.

Experiments across diverse datasets and training effi-
ciency. Results in Tab. 4 show that MotionVP (VP-guided
motion fusion) improves the generalization across ACDC
and Cityscapes. Tab. 5 shows that VPSeg with MotionVP
converges faster with higher training efficiency.
Re-using VP features with keyframes. In Tab. 6, we com-
pare the results of the experiments with different settings
for re-using VP features with keyframes. Specifically, we
took one frame as a keyframe for every p frames. Then, we
propagated the VP feature of each keyframe to the nearby
p adjacent frames. Tab. 6 shows that the cost of the slightly
increased FPS is a reduction in mIoU.

p mIoU (A.)↑ mIoU (C.)↑ FPS↑
No keyframe 77.48 82.46 3.4

1 77.42 82.41 3.5
2 77.35 82.28 3.5
3 77.26 82.16 3.5

Table 6. Ablation studies of different keyframe intervals p of
VPSeg on ACDC (A.) and Cityscapes (C.) with MiT-B3 backbone.

3. Detailed Pipelines
To exploit dynamic and static VP priors, we proposed

MotionVP and DenseVP. MotionVP extracts dynamic con-
text and can be divided into four parts: window partition
and VP detection, direction assignment, patch sampling,
and feature aggregation. DenseVP augments the dynamic
context with finer attention around the VP region and con-
sists of three steps: find VP patch index, select VP region,
and generate dense features. The augmented dynamic con-
text is sent to the prediction head for the final prediction.
The details of MotionVP and DenseVP pipelines are shown
in Fig. 4 and Fig. 5, while Tab. 7 explains types, domains,
and meanings of the symbols from MotionVP and DenseVP.

References
[1] John Canny. A computational approach to edge detection.

IEEE TPAMI, PAMI-8(6):679–698, 1986. 1, 2

[2] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe Franke,
Stefan Roth, and Bernt Schiele. The cityscapes dataset for
semantic urban scene understanding. In IEEE CVPR, 2016. 2

[3] Evelyne Lutton, Henri Maı̂tre, and Jaime Lopez Krahe. Con-
tribution to the determination of vanishing points using hough
transform. IEEE TPAMI, 16(4):430–438, 1994. 1, 2

[4] C. Jeremy Pye and J. A. Bangham. A fast algorithm for mor-
phological erosion and dilation. In EUSIPCO, 1996. 1, 2

[5] Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Acdc:
The adverse conditions dataset with correspondences for se-
mantic driving scene understanding. In IEEE ICCV, 2021. 2

[6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 4

[7] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M Alvarez, and Ping Luo. SegFormer: Simple and effi-
cient design for semantic segmentation with transformers. In
NeurIPS, 2021. 2

(a) Window partition and VP detection: given n+1 input video frames, we first extract feature maps with pre-trained transformer encoder.
The feature maps are then subdivided into feature blocks of size s× s (indexed by i).

(b) Direction assignment: we determine the assigned direction for each patch (xi, yi). The assigned direction (uji, vji) is the closest
candidate direction to vector (∆xji,∆yji), which points from the patch center to the VP.

(c) Patch sampling: after obtaining the assigned direction, we sample adjacent patches both forward and backward along the assigned
direction. As the frame interval increases, the sampling distance also increases with the sampling coefficient ∆d. But the sampled patches
should not exceed the boundaries of the feature map.

(d) Feature aggregation: we generate dynamic context F ′
t with cross-attention [6] operations. Specifically, for each patch (xi, yi), the

patch features of the current frame serve as queries, while the sampled features in neighboring frames serve as keys and values. After cross-
attention, we achieve patch-level dynamic features f ′

t , which are then simply tiled together to reconstruct the complete frame-level dynamic
context F ′

t .

Figure 4. Detailed MotionVP pipeline.

Figure 5. Detailed DenseVP pipeline. Find VP patch index: we find the closest patch to the VP as our VP patch. Select VP region: we
select a rectangular region around the VP patch as our VP region A. Generate dense features: the overlapping dense partition strategy is
applied in the VP region, obtaining dense features fA.

Table 7. Table of symbols, their types, domains, and meanings.

Symbol Type Size (length) Domain Meaning
I set n+ 1 - a set of input frames
T set n+ 1 - a set of timestamps
F set n+ 1 - a set of feature maps
D set n+ 1 - a set of patch indexes
A set (2a+ 1)(2b+ 1) - a set of sparse patch indexes of the VP region
V set 4 - a set of vector representations of candidate directions
S set 3n - a set of sampled features in n neighboring frames
c scalar - N number of feature channels

h,w scalar - N spatial height/width of the feature map
H,W scalar - N spatial height/width of the input frame
k scalar - N frame sampling interval
K scalar - N number of semantic classes
s scalar - N size of the feature block
m scalar - N number of dense patches in the VP region
∆d scalar - N sampling coefficient

(x̂j , ŷj) coordinate 2× 1 R patch-level VP position in frame j(
x̂p
j , ŷ

p
j

)
coordinate 2× 1 N pixel-level VP position in frame j

(xi, yi) coordinate 2× 1 N index of the i-th patch
(x̌f

ji, y̌
f
ji) coordinate 2× 1 N forward sampled patch index for the i-th patch in frame j

(x̌b
ji, y̌

b
ji) coordinate 2× 1 N backward sampled patch index for the i-th patch in frame j

(x̌l
ji, y̌

l
ji) coordinate 2× 1 N locally sampled patch index for the i-th patch in frame j

(x′
j , y

′
j) coordinate 2× 1 N VP patch index in frame j

It matrix H ×W R frame in time t
Ft matrix c× h× w R feature map for frame t
fti matrix c× s2 R patch-level feature for the i-th patch in frame t

Ftl, Fth matrix c× h× w R low/high-resolution feature map of It
f̌ji matrix c× 3s2 R sampled features for the i-th patch in frame j
F ′
t matrix c× h× w R frame-level dynamic features in frame t

f ′
ti matrix c× s2 R patch-level dynamic features for the i-th patch in frame t

fA matrix c×ms2 R dense features of VP region
F ′′
t matrix c× h× w R augmented dynamic context in frame t
E matrix h× w R VP proximity map

Q,Qc matrix c×K R learnable/contextualized queries in CMA
Fm matrix c×K R the merged context
Gnz matrix H ×W {0, 1} ground truth of the z-th class in the n-th image
Pnz matrix H ×W {0, 1} prediction of the z-th class in the n-th image
Mn matrix H ×W {0, 1} invalid mask of the n-th image

	. Vanishing Point Detection
	. Additional Ablation Studies
	. Detailed Pipelines

