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Supplementary Material

In this supplementary material, we provide details about
our Triplet Transformer architecture and the user study, ana-
lyze the boundaries between short-term (ST) and long-term
(LT), as well as present additional visual comparison re-
sults. Furthermore, we discuss the limitation and societal
impact of our work.

8. Triplet Transformer Architecture Details
The detailed architecture of our Triplet Transformer is il-
lustrated in Figure 8, comprising Short-Term Spatial Trans-
former (ST-ST), Long-Term Global Transformer (LT-GT),
and Long-Term Dynamic Transformer (LT-DT) modules.
Both our ST-ST and LT-GT modules perform Transformer
self-attention calculations separately within the normal and
shifted windows [29, 30], instead of across all frame tokens.

LT-GT with Auto-regressive. As shown in Table 3, we
introduce three auto-regressive strategies to explore their
ability to capture long-term temporal variation patterns in
our LT-GT module. In the vanilla iGPT’s auto-regressive
design [3], the current token zi is limited to conducting
self-attention calculations solely with the tokens preceding
it to predict its features, encompassing both semantic and
appearance. The calculation process of zi is as follows:

zi = TR(z1, z2, ..., zi−1), (11)
where TR denotes Transformer with vanilla self-attention.

To promote self-attention with an auto-regressive focus
on learning temporal appearance patterns rather than pre-
dicting semantic features, we enable the current token zi to
conduct self-attention with the tokens preceding it, named
F-D. The calculation process of zi in F-D is as follows:

zi = TR(z1, z2, ..., zi−1, zi). (12)
We further consider the reverse temporal trends and in-

troduce two bidirectional temporal auto-regressive strate-
gies, where, one utilizes a shared Transformer (Bi-D) and
the other employs a separate Transformer (FB-D). The cal-
culation process for these strategies is as follows:

zBi−D
i = C[TR(z1, ..., zi),TR(zi, ..., zT−1, zT )], (13)

zFB−D
i = C[TR(z1, ..., zi),TR′(zi, ..., zT−1, zT )], (14)

where C denotes concatenate operation, and T represents
the total number of input frames.

LT-GT with Masked Prediction. We also design dif-
ferent masking strategies for masked prediction within our
LT-GT module, drawing inspiration from BERT [9] and
MAE [16]. The calculation process is as follows:

zi = TR(z[1,T ]\M ), (15)
where M denotes masked tokens, randomly sampled from

the sequence [1, T ] with a certain probability of inclusion.
As shown in Table 3, the self-window masking (MS)

represents masking the current token during self-attention
computation, i.e., zi = TR(z[1,T ]\zi). The self-window and
random 50% masking (MS&50) represent masking the cur-
rent token and 50% of all tokens. M50, M75, and M90 in-
dicate random masking 50%, 75%, and 90% of all tokens,
respectively.

9. User Study Details
As shown in Table 5, we conduct user studies on the HY-
ouTube dataset and Real Composite Videos [31] using our
custom platform. These studies analyze the visual quality
of harmonized videos and the effectiveness of our tempo-
ral consistency evaluation metrics, i.e., R-RTC and fR-RTC.
Our custom platform page is illustrated in Figure 9.

For HYouTube dataset, we randomly select 20 groups of
videos from the testing dataset. Each group consists of a
composite video, a real video, and harmonized videos pro-
duced by three different methods (our VHTT, CO2Net [31]
and HT+ [14]). We invite users to choose the harmonized
video that is most similar to the real video. Additionally,
users rate the degree of flickering in each harmonized video
on a 5-point Likert scale, with higher scores indicating more
pronounced flickering.

For Real Composite Videos, we randomly select 20
groups of videos. Each group consists of a composite video
and harmonized videos produced by three different meth-
ods. We invite users to select the visually best among the
three harmonized videos and rate their degree of flickering.

Finally, we invite 50 users to participate in these studies
and ask each user to complete all evaluations, and then we
collect 2000 groups of comparisons for further analysis.

Following [35], we separately count the number of times
each of the three harmonization methods is selected on HY-
ouTube and Real Composite Videos, and then calculate
their respective percentages (higher is better), i.e., “Times”
in Table 5. We further calculate each method’s average
flickering degree score based on the harmonized videos they
correspond to, obtaining the average score for each method
(lower is better), i.e., “Degree” in Table 5.

10. The boundaries between ST and LT.
Based on our motivation, we set ST as 2-frame to lever-
age subtle temporal changes for better spatial harmoniza-
tion, and set LT as 5-frame during training based on com-
putational practicality while maximizing LT frames during
inference phase for richer temporal information. Table 8



Training S2&L5 S1&L5 S3&L5 S2&L3 S2&L4 S2&L8

Inference S2&L20 S2&L5 S1&L20 S3&L20 S2&L20

fMSE↓ 90.35 100.19 98.27 97.58 100.61 92.37 90.51

fR-RTC↓ 1.26 3.68 1.43 1.27 1.38 1.44 1.28

Table 8. Comparison of short-term (ST) and long-term (LT) in dif-
ferent settings. “Sx&Ly” means ST with x and LT with y frames.

demonstrates that: ST with 2-frame surpasses 1-frame and
3-frame (column: 2 vs. 4-5), because 1-frame lacks tempo-
ral variations and 3-frame overly focuses on temporal fea-
tures; using more frames for LT during training is beneficial
(2 vs. 6-7), but there may be an upper limit or insufficient
training (2 vs. 8), indicating further study required.

11. Additional Visual Comparison Results
Additional visual comparison results are in our GitHub
repository1. This video includes results of video harmo-
nization on both the HYouTube dataset and Real Compos-
ite Videos, failure cases, as well as video enhancement and
video demoiréing.

12. Limitation
We show failure cases in our GitHub repository1, presenting
the limitation of our method for harmonizing videos with
rapid moving scenes. We will address this issue by delv-
ing deeper into modeling spatio-temporal variation patterns
with foundation models and richer datasets.

13. Societal Impact
Developments in visual generative models including video
harmonization models, offer new applications and creative
workflows, while pose risks of misuse for producing decep-
tive content. It is crucial to manage and regulate the use of
such models.

1https://github.com/zhenglab/VideoTripletTransformer
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Figure 8. The architecture details of our Video Triplet Transformer, including Short-Term Spatial Transformer (ST-ST), Long-Term Global
Transformer (LT-GT), and Long-Term Dynamic Transformer (LT-DT).
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Figure 9. Our custom user study platform pages for both the HYouTube dataset (left) and Real Composite Videos (right) [31].
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