
NICE: Supplementary Material

A. Experimental Details
A.1. Datasets and Episodes

We have developed class-incremental learning (CIL) scenarios by slicing common image classification benchmark datasets.
For MNIST, FashionMNIST, and EMNIST (English letters, lower and upper cases correspond to the same class), as well as
CIFAR10, each learning episode comprises two consecutive classes. In contrast, CIFAR100’s episodes include 10 consecutive
classes, while those of Tiny ImageNet encompass 40 classes. Consequently, MNIST, FashionMNIST, CIFAR10, and Tiny
ImageNet each consist of 5 learning episodes, EMNIST has 13, and CIFAR100 has 10 episodes. This approach was chosen
to present a range of scenarios, from those with longer sequences and easier episodes (EMNIST), and relatively longer
sequences with challenging classes (CIFAR100), to those with more challenging, shorter sequences (TinyImageNet). While
creating the learning episodes, we adhered to the original class order and refrained from data augmentation during training,
limiting our data preprocessing to pixel normalization.

A.2. Architectures

In our experiments, we utilized three distinct architectures. Firstly, for the MNIST, FashionMNIST, and EMNIST datasets,
we implemented two convolutional layers (each with a 3x3 kernel, stride of 1, and 32 filters) followed by max-pooling. These
layers precede a fully connected layer with 500 neurons and an output layer, the size of which varies depending on the number
of classes in each dataset. Secondly, for the CIFAR10 and CIFAR100 experiments, we employed a modified version of the
VGG11 architecture, originally designed for the ImageNet dataset. To tailor it for smaller datasets, we halved the number of
convolutional filters and equipped the hidden fully connected layers with 1024 neurons each. Finally, for the Tiny ImageNet
dataset, we adopted the ResNet18 architecture, with the sole modification being the first convolutional layer, which uses a
3x3 kernel instead of the standard 7x7, better suiting smaller input sizes.

A.3. Baselines

We have compared NICE with eight established replay baselines:
• Experience Replay (ER): This straightforward replay algorithm enables sequential learning of new classes by augmenting

the training batches with samples from all past classes stored in the memory.
• Dark Experience Replay (DER): A simple extension of the ER algorithm, DER also employs raw sample replay. How-

ever, unlike storing hard class labels, it retains the logits from the trained model as targets for replayed samples.
• eXtended Dark Experience Replay (x-DER): This is a follow-up method proposed by the authors of DER, analyzing its

pitfalls. This extended version introduces multiple innovations such as memory content editing and adjusting logits tied to
unseen classes.

• Task-specific Attention Modules in Lifelong learning (TAMiL): This approach encompasses both raw replay and the
incremental addition of “task-specific attention modules” (TAMs) on the fly. First, a backbone learns current classes and
utilizes replay to avoid forgetting. Next, representations output by this backbone are filtered using TAMs that capture
task-specific information.

• Function Distance Regularization (FDR): Similar to DER, FDR involves replaying raw examples from previous classes.
It uses past examples and network outputs to align current and previous outputs.

• Incremental Classifier and Representation Learning (iCaRL): iCaRL is a sophisticated raw replay method that also
relies on revisiting all past classes. It is one of the most well-known replay methods and usually perform well across
different datasets and architectures. It has three main components: classification by a nearest-mean-of-exemplars rule,
prioritized exemplar selection based on herding, and representation learning using knowledge distillation and prototype
rehearsal

• Greedy Sampler and Dumb Learner (GDumb): GDumb greedily stores samples in memory as they come and at test
time, trains a model from scratch using samples only in the memory.

• Averaged Gradient Episodic Memory (A-GEM): A-GEM stands out among these baselines. While it stores raw sam-
ples, it doesn’t use them directly in training. Instead, it projects gradients of new tasks based on gradients computed for
memory samples. This approach necessitates storing raw examples for specific gradient computations during training.

As highlighted in the original paper, our benchmark focuses solely on “raw” replay methods. This decision is because
generative and activation replay approaches typically aim to approximate “raw” replay. However, they often fall short in
performance or depend on pretraining, which could lead to an unfair comparison.



A.4. Hyperparameter Selection

We trained all models using Stochastic Gradient Descent (SGD) with momentum. To ensure optimal performance, we tuned
the hyperparameters for each method and reported the best results. Our tuning process involved a grid search of three
different learning rates and batch sizes for all baselines. We did not employ learning rate decay (except for GDumb) or
weight decay. The replay batch size was matched with the normal batch size. For method-specific hyperparameters, such
as DER’s alpha or GDumb’s cutmix alpha, we conducted an additional hyperparameter search. This search included the
baseline values suggested in the original papers, whenever available. We selected hyperparameters based on the validation
accuracy, specifically focusing on a memory budget of ×2 and seed 0. These parameters were then applied across other
budgets and seeds. The training duration varied across datasets: 25 epochs for MNIST, FashionMNIST, and EMNIST; 50/75
epochs for CIFAR10/100; and 100 epochs for TinyImagenet.

Similar to some replay methods, NICE introduces an additional parameter, p, which determines the frequency of neuron
selection, pruning, and updates for both memory and the context detector. Arguably, τ , which specifies the target activation
fraction in Equation 2, can also be considered a hyperparameter. However, we found that setting it to 0.95 yielded consistent
results across all datasets, so we kept it fixed. NICE also incorporates logistic regression within its context detector. For
this, we primarily used the default parameters from Scikit-Learn. Nevertheless, we adjusted the maximum iterations and
regularization coefficient according to the memory size. Refer to Table 1 and Table 2 for the best hyperparameters we used
to report the results

Table 1. Hyperparameters for MNIST, FashionMNIST, and EMNIST: GDumb requires more epochs as it only trains on memory. We train
it for 500 epochs on these datasets.

Datasets

Method MNIST FashionMNIST EMNIST

Joint BS: 128 LR: 0.01 BS: 128 LR: 0.01 BS: 128 LR: 0.01
NICE BS: 32 LR: 0.01 p: 5 BS: 32 LR: 0.005 p: 5 BS: 32 LR: 0.005 p: 5
iCaRL BS: 64 LR: 0.01 BS: 32 LR: 0.01 BS: 32 LR: 0.01
TAMiL BS: 32 LR: 0.005 α: 0.1 β: 0.5 code dim: 8 BS: 32 LR: 0.005 α: 0.1 β: 0.5 code dim: 8 BS: 64 LR: 0.005 α: 0.1 β: 0.5 code dim: 8
x-DER BS: 128 LR: 0.005 α: 0.2 β: 0.8 BS: 128 LR: 0.001 α: 0.2 β: 0.8 BS: 128 LR: 0.001 α: 0.2 β: 0.8
DER BS: 32 LR: 0.005 α: 0.2 BS: 128 LR: 0.001 α: 0.2 BS: 0.001 LR: 32 α: 0.2
GDumb BS: 32 LR: (0.05, 0.005) cut-mix: n/a BS: 32 LR: (0.05, 0.005) cut-mix: n/a BS: 32 LR: (0.05, 0.005) cut-mix: n/a
ER BS: 32 LR: 0.005 BS: 128 LR: 0.001 BS: 128 LR: 0.001
FDR BS: 32 LR: 0.01 α 0.2: BS: 64 LR: 0.001 α: 0.2 BS: 32 LR: 0.001 α: 0.2
SGD BS: 128 LR: 0.01 BS: 128 LR: 0.01 BS: 128 LR: 0.01

Table 2. Hyperparameters for CIFAR10, CIFAR100, and Tiny ImageNet: GDumb requires more epochs as it only trains on memory. We
train it for 500, 1000, and 3000 epochs on CIFAR10, CIFAR100, and Tiny ImageNet, respectively..

Datasets

Method CIFAR10 CIFAR100 Tiny ImageNet

Joint BS: 32 LR: 0.01 BS: 32 LR: 0.005 BS: 128 LR: 0.01
NICE BS: 32 LR: 0.01 p: 10 BS: 32 LR: 0.005 p: 15 BS: 64 LR: 0.01 p: 20
iCaRL BS: 32 LR: 0.005 BS: 32 LR: 0.01 BS: 32 LR: 0.01
TAMiL BS: 32 LR: 0.03 α: 0.1 β: 0.5 code dim: 64 BS: 32 LR: 0.03 α: 0.1 β: 0.5 code dim: 64 BS: 64 LR: 0.001 α: 0.1 β: 1.0 code dim: 64
x-DER BS: 64 LR: 0.005 α: 0.2 β: 0.8 BS: 32 LR: 0.001 α: 0.2 β: 0.8 BS: 32 LR: 0.001 α: 0.2 β: 0.8
DER BS: 64 LR: 0.005 α: 0.2 BS: 32 LR: 0.001 α: 0.2 BS: 32 LR: 0.001 α: 0.2
GDumb BS: 32 LR: (0.05, 0.005) cut-mix: 1.0 BS: 32 LR: (0.01, 0.0001) cut-mix: 1.0 BS: 32 LR: (0.01, 0.0001) cut-mix: 1.0
ER BS: 32 LR: 0.01 BS: 32 LR: 0.001 BS: 32 LR: 0.001
FDR BS: 32 LR: 0.005 α: 0.2 BS:32 LR: 0.001 α: 0.2 BS: 32 LR: 0.001 α: 0.2
SGD BS: 128 LR: 0.01 BS: 128 LR: 0.01 BS: 128 LR: 0.01

A.5. NICE Parameter Count

The trainable parameter count in NICE undergoes minor variations during the training process. As connections are pruned
from younger to older neurons throughout training, the total parameter count decreases. On the other hand, fitting logistic
regression models to the context-detector leads to a modest increase in the number of parameters. To ensure fairness in
our benchmarks, we compare the parameter count of NICE with that of standard dense networks used in other baseline



methods. Our analysis primarily focuses on the parameter count at the end of the training period for simplicity. Moreover,
we estimate the maximum logistic regression parameter count by assuming models are fitted to all neurons, rather than just
those exceeding a certain age. This results in E − 1 logistic regression models, where E is the total number of episodes
observed. The parameter count for each model equals the number of neurons in the architecture, including input and output
neurons, plus an additional parameter for the bias term in logistic regressions. Table 3 presents these calculations in detail.
Overall, NICE has a notably lower parameter count than dense baseline models across various datasets.

Table 3. NICE’s parameter count compared to standard dense networks.

Parameter Counts

Datasets NICE Network Logistic Regressions NICE Total Dense Network Difference

MNIST 668, 329 4× 576 670, 633 798, 504 −127, 871
FashionMNIST 656, 412 4× 576 658, 716 798, 504 −139, 788
EMNIST 620, 066 12× 592 627, 170 806, 504 −179, 334
CIFAR10 2, 996, 963 4× 3438 3, 010, 715 4, 412, 256 −1, 401, 541
CIFAR100 2, 995, 482 9× 3528 3, 027, 234 4, 504, 416 −1, 477, 182
Tiny ImageNet 9, 192, 402 4× 4108 9, 208, 834 11, 605, 696 −2, 396, 862

A.6. Adding Neurons to NICE on-the-fly

In the main paper, we mention that it is possible to add neurons to the NICE architecture on-the-fly. This can be achieved
easily, but one should adhere to the rule: younger neurons do not input to older ones. For example, we can expand the layers
by adding age-0 neurons connected to the previous layer and the next layer’s age-0 neurons. For more depth, one should
connect the penultimate age > 0 neurons to the output and insert new age-0 neuron layers in between. These changes can be
efficiently implemented without disrupting the accuracy on seen classes.

A.7. Implementation and Compute Resources

All experiments were conducted on Ubuntu 20.04 using an NVIDIA GeForce RTX 3090 GPU with CUDA 12.0. We utilized
PyTorch 1.13.1 for deep learning components, Scikit-Learn 1.2.1 for logistic regression training, and Python 3.10.9.

B. NICE Pseudo-code

Algorithm 1 NICE Algorithm for a single Episode

Require: De, f , M , C ▷ Dataset, Network, Activation Memory, Context-detector
Require: K, p, m, T ▷ # epochs, selection period, # activations to store, set of layer thresholds

1: for i = 0 to K
p do

2: if i == 0 then
3: f = SelectAll(f) ▷ Initial selection. All age-0 neurons become age-1
4: else
5: f = Select(f, τ = 0.95) ▷ Select top neurons to achieve τ fraction of total activaton
6: f = UpdateConnections(f) ▷ Ensure no connections from age-u to age-v where u < v
7: end if
8: f = Train(f,De, epochs = p) ▷ Train age-1 neurons for p epochs
9: M = UpdateMemory(f,De,M, T,m) ▷ Store m episode activations to memory

10: C = UpdateContextDetector(C,M) ▷ Fit logic regressions on M
11: end for
12: f = IncrementAges(f) ▷ Age all neurons above age-0 by one
13: f = FreezeConnections(f) ▷ Freeze incoming connections of neurons age > 1
14: return f , M , C



C. Optimality Proof for Greedy Selection
Recall that we compute the activation of age-1 neurons at each layer on episode examples as follows:
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where 0 ≤ τ ≤ 1 (set to 0.95 for experiments) and Sl
1 is the set of neurons we keep at age-1. Notice that the right side of

the inequality does not contain the set in the minimization objective. Thus, we replace it with a constant:
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Our goal is to pick a minimum-sized set of neurons Sl
1 to achieve or exceed the target T . We propose the following simple

greedy algorithm:
1. Sort all neurons of age-1 in descending order.
2. Pick the neuron with the largest total activation and add it to the set until we reach or exceed the target T .

Proof: We will show that the greedy algorithm finds a solution with a sum of activations at least T , using fewer or the
same number of neurons compared to any other optimal algorithm. Consider the optimal solution O consisting of k neurons,
and assume that it does not include a particular neuron nl

i from the top-k activations. Note that if O does include nl
i, it is the

same as the greedy solution. In the scenario where nl
i is not part of O, we can substitute this neuron nl

i with one or more
neurons of lower or equal activation in the O. Because the neuron we are adding has a larger activation, the sum of activations
will either stay the same or increase, while the number of units decreases or stays the same. This enhances the solution’s
quality, contradicting the assumption of O being optimal.

D. Additional Results
In the main paper, due to space constraints, we omitted some complementary results. Firstly, Table 4 offers a more detailed
comparison with Replay methods, including standard deviations across multiple runs with different random seeds. Further-
more, Table 5 presents the average forgetting after learning has been completed for the top-performing methods (NICE,
iCaRL, TAMiL, and x-DER). Following the approach described in [8], we measure forgetting for the j-th episode classes
after the model has completed episode k > j as:

fk
j = max

l∈{1,...,k−1}
al,j − ak,j , ∀j < k (4)

where al,j is the test accuracy for episode j classes after incrementally training the network from tasks 1 to l. Next, we
calculate the average forgetting after the k-th episode as Fk = 1

k−1

∑k−1
j=1 f

k
j . Lower Fk implies less forgetting on seen

classes.
In the following subsections, we delve deeper into the replay baselines, specifically examining the ”Forget and Relearn”

phenomenon described in the Introduction. Subsequently, we provide a thorough analysis of neuron activations, demonstrat-
ing that neurons display distinct activation patterns for familiar and unfamiliar classes, extending this observation to datasets
beyond CIFAR10. Finally, we explore alternatives to the logistic regression-based context detector.

D.1. Analyzing the “Forget and Relearn” Phenomenon in Replay Methods

In the Introduction, we discussed the phenomenon where DER and FDR methods completely forget digits 0 and 1 from the
MNIST dataset when new classes are encountered and later relearn these digits using replay samples. This section expands
that analysis to include various datasets and additional baseline methods such as ER and A-GEM. Our approach involves
training models with DER, FDR, ER, and A-GEM, and closely tracking their accuracy on episode-1 classes throughout the
training period. To effectively demonstrate the “forget and relearn” behavior, we conduct tests after every training update



Table 4. Accuracy across classes following all episodes on three memory budgets (standard, doubled, and quadrupled): Average accuracies
reported across three seeds. Standard deviations are presented in parentheses, previously omitted due to space limitations in the main paper.

Datasets

Method MNIST Fashion EMNIST CIFAR10 CIFAR100 TinyImageNet

Joint 98.4 (±0.0) 86.8 (±0.5) 92.1 (±0.3) 75.8 (±4.7) 41.3 (±0.5) 38.0 (±0.2)

NICE 83.4 (±0.8) 73.9 (±0.8) 66.3 (±0.4) 55.1 (±0.5) 20.3 (±0.1) 11.8 (±0.1)
iCaRL 79.7 (±1.8) 68.7 (±0.8) 65.3 (±0.5) 54.2 (±0.6) 23.5 (±0.5) 10.3 (±0.2)
TAMiL 81.1 (±1.2) 68.2 (±2.6) 58.1 (±2.7) 26.8 (±7.3) 16.8 (±1.0) 7.2 (±0.5)
x-DER 77.6 (±0.5) 65.3 (±0.7) 62.4 (±0.6) 37.2 (±1.6) 24.7 (±0.4) 11.6 (±0.1)
DER 67.6 (±0.7) 65.4 (±1.5) 47.5 (±0.2) 27.3 (±2.5) 13.1 (±0.1) 9.6 (±0.1)
GDumb 60.3 (±7.9) 62.6 (±2.9) 43.8 (±1.8) 30.2 (±1.3) 10.4 (±0.2) 2.7 (±0.1)
ER 66.5 (±0.3) 58.3 (±4.2) 39.0 (±1.0) 23.1 (±2.2) 8.9 (±0.1) 8.8 (±0.1)
FDR 64.3 (±3.2) 52.7 (±4.9) 42.2 (±1.7) 27.5 (±2.3) 9.6 (±0.2) 10.2 (±0.1)
A-GEM 33.9 (±7.9) 42.6 (±3.5) 15.5 (±4.5) 21.2 (±4.3) 7.7 (±0.0) 10.2 (±0.1)

NICE (×2) 85.9 (±0.9) 75.1 (±0.8) 69.4 (±0.3) 56.5 (±0.6) 22.0 (±0.1) 12.2 (±0.2)
iCaRL (×2) 84.6 (±0.2) 74.5 (±0.6) 67.9 (±0.4) 56.3 (±0.7) 24.6 (±0.3) 13.6 (±0.2)
TAMiL (×2) 84.4 (±1.2) 70.6 (±1.7) 67.4 (±0.3) 34.1 (±2.5) 21.7 (±0.9) 11.6 (±0.2)
x-DER (×2) 85.6 (±0.3) 71.9 (±0.5) 68.6 (±0.5) 42.6 (±1.1) 25.7 (±0.4) 14.8 (±0.1)
DER (×2) 80.7 (±0.9) 73.4 (±1.5) 63.6 (±1.1) 35.4 (±0.6) 18.5 (±0.2) 9.8 (±0.1)
GDumb (×2) 73.4 (±1.6) 66.4 (±1.8) 56.7 (±1.0) 37.0 (±1.1) 14.5 (±0.6) 3.8 (±0.1)
ER (×2) 79.7 (±2.2) 66.6 (±1.7) 53.8 (±2.5) 31.5 (±1.8) 12.7 (±0.6) 8.6 (±0.3)
FDR (×2) 75.9 (±1.8) 64.8 (±4.5) 54.0 (±0.3) 35.5 (±1.2) 12.3 (±0.1) 10.1 (±0.1)
A-GEM (×2) 64.8 (±5.6) 45.5 (±5.0) 17.6 (±2.8) 21.9 (±4.0) 7.8 (±0.1) 10.4 (±0.1)

NICE (×4) 87.7 (±0.9) 76.3 (±0.6) 71.7 (±0.4) 57.6 (±0.9) 23.0 (±0.4) 12.3 (±0.1)
iCaRL (×4) 85.8 (±0.3) 76.1 (±0.2) 69.1 (±0.7) 59.1 (±1.3) 25.8 (±0.8) 15.8 (±0.4)
TAMiL (×4) 92.7 (±0.5) 77.2 (±0.9) 78.6 (±0.6) 37.2 (±6.4) 24.8 (±1.3) 13.3 (±0.6)
x-DER (×4) 91.6 (±0.4) 75.8 (±0.7) 74.8 (±0.6) 50.0 (±0.3) 28.5 (±1.0) 16.8 (±0.2)
DER (×4) 90.6 (±1.0) 77.7 (±0.4) 75.3 (±0.8) 41.1 (±1.7) 25.2 (±0.3) 10.0 (±0.1)
GDumb (×4) 86.4 (±0.5) 74.2 (±0.7) 65.8 (±1.1) 41.8 (±0.2) 20.8 (±0.8) 4.7 (±0.5)
ER (×4) 88.2 (±0.3) 74.9 (±0.9) 64.7 (±1.1) 38.7 (±1.6) 17.8 (±0.4) 8.8 (±0.2)
FDR (×4) 84.8 (±1.7) 72.6 (±2.9) 64.8 (±0.7) 45.0 (±0.7) 18.2 (±0.2) 10.1 (±0.1)
A-GEM (×4) 71.6 (±6.1) 44.5 (±3.9) 15.8 (±6.0) 21.1 (±4.3) 7.7 (±0.1) 10.5 (±0.2)

SGD 19.9 (±0.1) 20.0 (±0.0) 6.4 (±1.8) 19.1 (±0.2) 7.2 (±0.1) 10.2 (± 0.4)

during the initial epoch of each new training episode, followed by testing after the completion of each subsequent epoch. We
used ×4 memory budget to ensure that we have enough replay samples.

Figure 1 presents results for EMNIST, CIFAR10, and CIFAR100. Across all datasets and methods, we observe the “Forget
and Relearn” phenomenon. Each time a new set of classes is introduced, the learner rapidly forgets old classes, followed by
a partial recovery in performance. These results bolster our critiques of replay methods across various datasets and baselines.
However, the family of replay methods is extensive, and it is possible that some replay methods do not suffer from this issue.

D.2. Relationship Between Activations and Context

In our paper, we discuss how NICE infers context through neuron activations, despite these neurons not being explicitly
trained to respond differently to various episode classes. We asserted that certain neurons show stronger activations for
learned classes and weaker ones for unfamiliar classes, facilitating the distinction between these two types of classes. In
the main paper, due to space constraints, we only presented results for CIFAR10. However, here in Figure 2, we replicate
the same experiment for MNIST, FashionMNIST, EMNIST, CIFAR100, Tiny ImageNet. Given the extensive number of
neurons, our focus for CIFAR100 and Tiny ImageNet is on the top-250 neurons identified by a Random Forest. Specifically,
we fit a Random Forest Classifier with 100 decision trees to determine whether neuron activations correspond to episode



Table 5. Forgetting across classes following all episodes on three memory budgets (standard, doubled, and quadrupled). Results are
averaged across three seeds. Standard deviations across seeds are presented in parentheses.

Datasets

Method MNIST Fashion EMNIST CIFAR10 CIFAR100 TinyImageNet

NICE 8.1 (±0.8) 14.2 (± 0.3) 15.0 (±0.4) 19.1 (±0.2) 13.9 (±0.6) 13.8 (±0.2)
iCaRL 12.9 (±1.9) 21.3 (±0.9) 16.6 (±0.1) 29.4 (±0.9) 17.0 (±0.4) 18.3 (±0.1)
TAMiL 11.2 (±3.1) 19.8 (±3.1) 20.7 (±0.8) 64.0 (±3.2) 40.5 (±0.5) 31.3 (±1.1)
x-DER 27.7 (±0.6) 29.9 (±6.0) 35.2 (±1.0) 53.1 (±5.4) 28.6 (±0.3) 49.5 (±0.2)

NICE (×2) 7.1 (±0.8) 13.2 (±0.4) 13.9 (±0.5) 19.7 (±0.2) 13.6 (±0.6) 13.2 (±0.2)
iCaRL (×2) 7.4 (±0.6) 13.4 (±0.2) 14.0 (±0.2) 27.0 (±0.4) 15.9 (±0.3) 13.4 (±0.1)
TAMiL (×2) 12.2 (±1.3) 21.6 (±6.0) 14.9 (±1.5) 60.2 (±10.1) 31.3 (±1.6) 44.7(±1.2)
x-DER (×2) 17.4 (±0.4) 21.5 (±5.8) 27.1 (±0.4) 47.1 (±3.2) 19.8 (±1.0) 44.1 (±0.4)

NICE (×4) 6.7 (±0.1) 12.7 (±0.7) 12.9 (±0.4) 19.5 (±0.7) 13.8 (±0.1) 13.9 (±0.3)
iCaRL (×4) 6.7 (±0.8) 12.7 (±1.0) 13.5 (±0.2) 24.4 (±1.5) 14.4 (±0.3) 11.6 (±0.3)
TAMiL (×4) 5.5 (±0.6) 17.5 (±0.7) 11.5 (±0.5) 55.8 (±7.5) 24.4 (±2.0) 40.1 (±1.9)
x-DER (×4) 7.9 (±2.9) 10.5 (±3.5) 20.6 (±0.6) 35.5 (±0.2) 12.3 (±0.5) 40.1 (±0.1)

Table 6. Context detector accuracy (%) with different heuristics.

Heuristics Fashion EMNIST C10 C100

Logistic Regression 74.9 66.5 57.7 28.4
MLP-100 75.8 68.7 57.4 27.4
RF-100 77.2 69.2 55.3 27.5
Nearest Hamming 70.3 67.1 30.7 21.8
Ave. Hamming 30.3 33.2 30.1 10.8
Random 20 7.6 20.1 9.8

one, utilizing the feature importance from the Random Forest to select the top-250 neurons. For smaller scale experiments
(MNIST, FashionMNIST, and EMNIST), we include all neurons but order them based on importance to enhance clarity in
visualization. These additional results support our observation on CIFAR10.

D.3. Context Detector Ablation Experiment

We conducted an additional experiment, comparing chained logistic regressions to various heuristics. Table 6 shows results
using standard memory budget. Nearest and average Hamming distances determine context by using the closest memory
entry and the mean distance to episode entries, respectively. We also tested chained MLPs (single 100-unit hidden layer) and
Random Forests (100-tree). The findings indicate that while complex heuristics may outperform on some datasets, chained
logistic regression is an efficient, and robust choice.



Figure 1. DER, FDR, ER, and A-GEM are trained on EMNIST (row 1), CIFAR10 (row 2), and CIFAR100 (row 3), with vertical dashed
lines indicating the start of a new episode. Note that the x-axis shows evaluation IDs rather than training iterations. We run evaluations
after every update during the first epoch of each episode, followed by one evaluation after each subsequent epoch.



Figure 2. Average activations of the neurons for Episode-1 classes (blue, top) and for the remaining classes (red, bottom) are shown. a)
MNIST, b) FashionMNIST, c) EMNIST, d) CIFAR100, e) Tiny ImageNet.



E. From Neuroscience to Deep Learning
Machine learning has already gained much from the emulation of basic features of neural circuits. While the brain is too
complex to recreate fully, there are fundamental principles at work which may be applied to machine learning. NICE aims
to provide stable memory capabilities inspired by neuroscience observations of context-dependent network partitioning in
the hippocampus. However, NICE is not intended to be a model of the brain, but instead a machine learning algorithm
loosely inspired by the functioning of the brain. In this section, we draw on neuroscience literature to compare and contrast
the structure of NICE with the hippocampus. More specifically, we highlight (1) neurogenesis in the dentate gyrus and (2)
contextual discrimination between old and young neurons as key inspirations from hippocampal memory encoding processes.

E.1. Biological Underpinnings of NICE

Of all the brain regions, the hippocampus has long been theorized to play a central role in memory encoding [21, 26, 29, 30].
In corroboration with this, hippocampal-lesioned patients are unable to form new declarative memories (e.g., events or
historical episodes). Thus, the hippocampus represents a uniquely important brain region for the study of memory encoding
and for the research into memory mechanisms in general.

E.1.1 Dentate Gyrus Neurogenesis

Within the hippocampus, one region, the dentate gyrus (DG), displays a unique ability to produce new neurons during
adulthood, being one of a few brain regions to do so [11, 12, 14, 17, 27]. This continual turnover of DG neurons has
been proposed to serve an important role in the ability of the hippocampus to encode new memories throughout adulthood
[2, 9, 11, 13, 14, 17, 18, 27]

The majority of the neurons of the dentate gyrus, and the neurons which are continually grown in adulthood, are known
as granule cells (GCs). These neurons are developmentally stacked upon each other so that older neurons are located deeper
(towards the stratum oriens), and younger neurons are packed on top of these older neurons (towards the stratum moleculare)
[1, 21]. The dendrites (analogous to input connections in machine learning) of older GCs are more extensive and receive
more synaptic connections than their younger counterparts.

In the dentate gyrus, newborn granule cells undergo extended maturation through developmental stages driven by specific
transcription factors [11, 14]. A substantial portion of newborn GCs die within the first couple weeks of their birth. This
death occurs in two waves, one when the neurons are first born and one when synaptic connections begin to form. At this
second stage, only neurons which are able to receive contextual input survive [11]. These selected neurons then go through
a maturational stage from 4-6 weeks where they exhibit increased synaptic plasticity [2, 9, 11, 13]. Beyond this point, their
threshold for activation and their input specificity begin to increase as they become immature granule cells. Thus, synaptic
plasticity in the dentate gyrus is largely confined to a subset of newly generated neurons. This characteristic corresponds to
NICE’s use of a developmental subset to learn synaptic associations, as described in section 3.2. A natural consequence of
different generations of neurons growing and maturing together is that these neurons will become interconnected [10]. This
functional feature corresponds to NICE’s wiring of same-age neurons together, as described in section 3.2.

As immature GCs age, they gradually integrate into their surroundings as they become functionally coupled into excitatory
and inhibitory subnetworks. Immature and mature GCs in the dentate gyrus are heavily inhibited relative to newborn neurons.
This heavy direct inhibition can be interpreted as a mechanism for network partitioning [5, 20, 31]. This characteristic
corresponds to NICE’s use of thresholded network activity to inhibit network inference, as described in section 3.4. Fully
mature neurons contribute to recognition of known patterns, i.e., pattern completion, unlike the learning capabilities provided
by newborn neurons [2, 17, 18].

In NICE, we approximate the continuous process of neural development by categorizing neurons into three discrete matu-
ration stages: progenitor (age-0), immature (age-1), and mature neurons (age-2 and older), corresponding to newborn, imma-
ture, and mature granule cells, respectively. Furthermore, while mature neurons have greatly reduced synaptic potentiation,
we approximate this by freezing connections to mature neurons.

E.1.2 Hippocampal Network Context

In neuroscience, the term “context” has many connotations, as it can refer to the application of prior knowledge to current
processing [3], as well as the identification of environments [15] and features [32]. One definition for context is neuron-
level input which modulates neuron excitability, not to be confused with feed-forward driving input which directly causes
neuron activity [16]. Anatomically, driving input and neural context correspond to synaptic connections onto proximal and



distal dendrites, respectively. Moreover, we observe that neurogenesis allows for an inherent form of network context in that
early-born neurons drive network activity while late-born neurons are context-modulated [4, 6, 23, 24]. This network context
inspires NICE’s use of network activity to inform network partitioning along developmental boundaries.

In the brain, a network’s ability to differentiate between contexts relies on developmental differences between subpopu-
lations of neurons [2, 4, 6, 7, 10, 17, 18, 23, 24, 28]. Early-born hippocampal neurons are heavily interconnected and play
a driving role in stable ensemble formation and the processing of familiar environments [4, 10, 23–25]. These early-born
neurons are active at regular locations in the environment, forming a stable grid of activity that “remaps” upon changes in
environment or context [15, 17, 32]. Middle-born neurons are moderately connected and heavily inhibited, facilitating pattern
separation, i.e., the orthogonalization of similar inputs, via increased sparsity [4, 11]. This inhibitory activity can be inter-
preted as a subnetwork which learns to partition excitatory network activity [4, 5, 20, 31]. Late-born hippocampal neurons
facilitate contextual discrimination and pattern separation via sparse and plastic synapses [2, 6, 9, 11, 13, 17, 18, 27, 32].

In both cases, developmentally differentiated neuron subpopulations play distinct roles in memory encoding processes,
with the older, high-activity neurons retaining past knowledge and younger, low-activity neurons learning new associations.
As older neurons are more heavily interconnected, they are more likely to respond to sensory changes corresponding to
novelty [5]. This is akin to how NICE uses thresholded unit activity to identify an in-distribution subnetwork, as discussed in
section 4.2 (see figure 5). While the strong interconnectivity of old neurons provides them with stability, it means that stimuli
may not be uniquely represented since multiple stimuli may engender the same pattern of activity [2, 18, 23]. In contrast,
the sparse connectivity of low-activity neurons means they can encode different features. This is akin to how NICE recruits
low-activity units to encode new contexts.

Thus, in the brain, contextual factors underlie the persistent storage of information. In the dentate gyrus, the growth of
new neurons supports contextual discrimination throughout adulthood. Specifically, neural pruning and neurogenesis in the
dentate gyrus represent the refreshing of memory capacity to allow for new learning. This developmental learning is informed
by excitatory and inhibitory “contextual input” which determines the allocation of network resources per a specific scenario.
NICE takes inspiration from these neuroscientific observations to design a method for continual learning which does not
inherently rely on replay but instead modulates unit activity based on network context to prevent catastrophic forgetting.

E.2. Biological Plausibility of NICE

Modeling a network as interconnected and complicated as the mammalian brain requires the distillation of biologically
complex processes to functional features that can be grossly approximated by ML techniques. Naturally, these simplifications
fail to capture all of the functionality and efficiency of neurological circuitry. The aim of NICE is not to model the brain,
but instead to create a useful algorithm based on principles inspired by the brain. Therefore, in this section, we discuss the
limitations of NICE with regards to neuroscience.

As mentioned, context detection in the brain is the result of an interplay of specialized developmental populations. How-
ever, in NICE neurons of the same age are wired together, but unit differentiation is limited to the developmental association
of synaptic connectivity. Therefore, NICE draws a direct link between neurogenesis and context detection, whereas in the
brain these processes are in fact decoupled. More specifically, context detection in the hippocampus relies on an interplay of
stable activity driven by older neurons and dynamic learning provided by younger neurons [6, 17, 18, 23, 27]. This process is
fundamentally facilitated by developmental differentiation, but is also a product of the inputs that the hippocampus receives
[14, 19, 22] and the neural circuitry which has evolved to enable context detection [3, 24, 28].

Most of the literature on the hippocampus focuses on spatial navigation [3, 23, 25], and not on its potential role in image
classification [29]. This is in part due to the practical nature of experimental paradigms studying spatial navigation. Therefore,
more work needs to be done to understand how hippocampal processes could be involved in non-locomotor tasks such as
image recognition. Nevertheless, NICE presumes that image classification tasks can be addressed in an equivalent manner to
spatial navigation tasks in that network activity is leveraged for context detection. However, this simplification ignores the
differential processing of separate sensory modalities within the hippocampus [7, 19, 23, 24, 28, 30].

Another limitation of NICE lies in the distinction between neural context and network context. Since NICE aggregates
information from across the network to determine episodic identity, it represents a form of network context similar to the
dynamic between low-activity and high-activity neurons of the hippocampus. However, NICE excludes a formulation of
neural context, meaning that individual units do not separately modulate their inputs, unlike neurons in the brain [3, 16]. On
a more abstract level, this represents the implementation of context solely based on proximal feed-forward flow. However,
the context detector in NICE allows for information from downstream regions of the network to partition upstream network
activity, serving as a form of contextual feedback. Therefore, NICE employs a mechanism for neural cooperation insofar as
the context detector operates on a global network signal to partition local network activity.



As described in section 3.3, older neurons in NICE have their connections from younger neurons pruned. This connection
pruning was done to prevent catastrophic forgetting from the updating of prior knowledge with new learning. However,
this does not preserve the biological characteristic of older neurons having more incoming connections then their younger
counterparts as outlined above. Were a mechanism for unit context to be integrated into NICE, it is conceivable that older
neurons could receive connections from younger neurons given that their prior knowledge may be preserved via different
contexts. This would allow for prior knowledge to be leveraged for future tasks (old-to-new), as NICE already incorporates,
but also for new learning to potentially shape prior knowledge (new-to-old) in an informed manner.
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[23] Farnaz Sharif, Behnam Tayebi, György Buzsáki, Sébastien Royer, and Antonio Fernandez-Ruiz. Subcircuits of deep and superficial
ca1 place cells support efficient spatial coding across heterogeneous environments. Neuron, 109(2):363–376.e6, 2021. 10

[24] Ivan Soltesz and Attila Losonczy. Ca1 pyramidal cell diversity enabling parallel information processing in the hippocampus. Nature
Neuroscience, 21:484–493, 2018. 10

[25] Marielena Sosa, Anna Gillespie, and Loren Frank. Neural Activity Patterns Underlying Spatial Coding in the Hippocampus. 2016.
10

[26] E. Tulving and H. J. Markowitsch. Episodic and declarative memory: role of the hippocampus. Hippocampus, 8(3):198–204, 1998.
9

[27] Sebnem Nur Tuncdemir, Clay Orion Lacefield, and Rene Hen. Contributions of adult neurogenesis to dentate gyrus network activity
and computations. Behavioural Brain Research, 374:112112, 2019. 9, 10

[28] Sebnem N. Tuncdemir, Andres D. Grosmark, Gergely F. Turi, Amei Shank, John C. Bowler, Gokhan Ordek, Attila Losonczy, Rene
Hen, and Clay O. Lacefield. Parallel processing of sensory cue and spatial information in the dentate gyrus. Cell Reports, 38(3):
110257, 2022. 10

[29] Nicholas B. Turk-Browne. The hippocampus as a visual area organized by space and time: A spatiotemporal similarity hypothesis.
Vision Research, 165:123–130, 2019. 9, 10

[30] Niels van Strien, Natalie Cappaert, and Menno Witter. The anatomy of memory: An interactive overview of the parahippocampal-
hippocampal network. Nature reviews. Neuroscience, 10:272–82, 2009. 9, 10

[31] Bert Vancura, Tristan Geiller, and Attila Losonczy. Organization and plasticity of inhibition in hippocampal recurrent circuits.
bioRxiv, 2023. 9, 10

[32] Xinyu Zhao, Yingxue Wang, Nelson Spruston, and Jeffrey Magee. Membrane potential dynamics underlying context-dependent
sensory responses in the hippocampus. Nature Neuroscience, 23:1–11, 2020. 9, 10


	. Experimental Details
	. Datasets and Episodes
	. Architectures
	. Baselines
	. Hyperparameter Selection
	. NICE Parameter Count
	. Adding Neurons to NICE on-the-fly
	. Implementation and Compute Resources

	. NICE Pseudo-code
	. Optimality Proof for Greedy Selection
	. Additional Results
	. Analyzing the ``Forget and Relearn'' Phenomenon in Replay Methods
	. Relationship Between Activations and Context
	. Context Detector Ablation Experiment

	. From Neuroscience to Deep Learning
	. Biological Underpinnings of NICE
	Dentate Gyrus Neurogenesis
	Hippocampal Network Context

	. Biological Plausibility of NICE


