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Supplementary Material

1. Introduction
In this supplementary material, we provide more explana-
tions of the proposed method. First, details of the network
architecture and the training procedure are described in Sec-
tion 2. Further analysis of the proposed instance-aware con-
trastive learning scheme is conducted in Section 3. In the
following, additional discussions about the results are given
in Section 4.

2. Implementation Details
2.1. Architecture Details

For the reproducibility of the proposed method, the detailed
architectural setting is specified in Table 1, except for the
backbone network. Any backbone network can be adopted
to encode the feature which is fed into network branches,
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ResBlock 3 1 1 64 64 64 64
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ConvBlock 3 2 1 128 64 32+2 64
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ConvBlock(top) 3 1 1 64 64 64+1+64 64

ConvBlock(bottom) 3 1 1 64 64 64+24+64 64
ResBlock 3 1 1 64 64 64+64 128
ResBlock 3 1 1 64 64 128 128
1×1 Conv 1 1 0 64 64 128 142
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ConvBlock 3 2 1 128 64 32+2 64
ResBlock 3 1 1 64 64 64 64
ResBlock 3 1 1 64 64 64 64
1×1 Conv 1 1 0 64 64 64 3

Table 1. The detailed architecture of network branches in the
proposed method. F, S, P, R, and C denote the size of filter,
stride, padding, resolution, and the number of channels, respec-
tively. Note that each ResBlock contains two convolution layers
whose setting is same as shown in this Table.

while we basically use ResNet-50 [4] in this work. Note
that the 2-dimensional coordinate map, which contains the
coordinate index (x, y) at every location of the feature map
[13], is concatenated with the backbone feature along the
channel direction (see Cin for the first layer of each branch).
The number of input and output channels for all fully con-
nected layers included in nonlinear projectors (i.e., PC and
PJ in Fig. 3 of the main paper) is set to 64, without us-
ing the additive bias. The number of parameters in the pro-
posed network is 35.6 million (3.1 million without the back-
bone network) and our model achieves the processing speed
of 46.4 fps on a single NVIDIA GeForce RTX 3090 GPU,
which enables the real-time operation.

2.2. Training

Loss calculation according to dataset. During training,
3D human pose datasets (i.e., Human3.6M [5], MPI-INF-
3DHP [11], and MuCo-3DHP [12]) and 2D human pose
datasets (i.e., MPII [1], LSP [6], COCO [10], and Crowd-
Pose [9]) are utilized to optimize parameters of the proposed
network. Since only the Human3.6M dataset provides the
ground truth for pose and shape parameters of the SMPL
model [2], we use the ground truth of 2D and 3D keypoints
for MPI-INF-3DHP and MuCo-3DHP datasets instead. On
the other hand, the pseudo ground truth for pose and shape
parameters of the SMPL model, which is generated by us-
ing [8], is adopted for MPII, LSP, and COCO datasets. The
annotation of 3D keypoints also can be acquired by lin-
early regressing the pseudo mesh vertices into joints with
the pre-defined matrix. For the CrowdPose dataset, only 2D
keypoints labels are used for training. The loss terms used
when learning each dataset are shown in Table 2.

Datasets Lpose Lshape L3d Lpa3d L2d

Human3.6M ✓ ✓ ✓ ✓ ✓
MPI-INF-3DHP ✓ ✓ ✓
MuCo-3DHP ✓ ✓ ✓
MPII ✓ ✓ ✓ ✓ ✓
LSP ✓ ✓ ✓ ✓ ✓
COCO ✓ ✓ ✓ ✓ ✓
CrowdPose ✓

Table 2. Activated loss terms for each training dataset. Note that
other loss terms (i.e., Lcont, Lcenter , Ljoint, and Lprior) are al-
ways activated for all the datasets.

Training of heatmaps. In the proposed method, we lever-
age predicted heatmaps corresponding to the body center
[13] and 24 joints [2] in the process of both contrastive
learning and mesh regression. For training, we generate
the ground truth for the heatmap by applying the Gaus-
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Figure 1. Visualization examples for the ground truth (top) and the
prediction result (bottom) of the heatmap. (a) Center heatmap. (b)
Joint heatmap corresponding to the right knee. (c) Joint heatmap
corresponding to the left shoulder.

sian kernel, where the peak point is set to the value of 1,
for each keypoint. By using the body center heatmap loss
Lcenter and the joint heatmap loss Ljoint, the heatmap can
be learned as shown in Fig 1. As can be seen, the heatmap
is accurately activated at every keypoint location of multiple
persons even under severe person-to-person occlusions.

3. Instance-aware Contrastive Learning

3.1. Convergence of Contrastive Loss

To embed the identity information in the latent space, pa-
rameters are optimized for center and joint features via the
proposed contrastive loss Lcont (see Eq. (2) of the main
paper). The convergence trend of the proposed contrastive
loss is shown in Fig. 2. As can be seen, the loss value is sta-
bly converged without severe oscillations during training.
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Figure 2. Convergence trend of the proposed contrastive loss dur-
ing 10.5K iterations of training.
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Figure 3. An example of overlapped case between body center and
joint positions of different persons. (a) Input image. (b) Ground
truth of the center heatmap. (c) Ground truth of the joint heatmap
corresponding to the left shoulder.

3.2. Effect of Nonlinear Projector

In person-to-person occlusion scenes, locations of the body
center for one person and the joint for another person are
often overlapped. The corresponding example is shown in
Fig. 3. As can be seen, the body center of the person in
the back (see Fig. 3(b)) and the left shoulder of the person
in the front (see Fig. 3(c)) are located at the same position.
Since this problem may confuse the network in representing
the identity information if a single instance map is used for
instance-aware contrastive learning, we instead encode the
center-aligned instance map and the joint-aligned instance
map, respectively. To compare center and joint features that
are sampled from two different instance maps, we transform
them into the same latent space through each nonlinear pro-
jector, which is designed similarly to [3], while maintain-
ing the essential information related to the personal iden-
tity. The importance of the nonlinear projector is demon-
strated in Table 3. Based on the performance comparison,
it is thought that the nonlinear projector plays a significant
role in learning the identity representation.

Methods MPJPE(↓) PA-MPJPE(↓)
Ours (w/o projector) 105.1 80.0
Ours (w/ projector) 102.0 77.2

Table 3. Performance analysis according to the use of the nonlin-
ear projector based on the 3DPW-PC dataset.

4. Discussion on Results
4.1. Qualitative Results

Additional examples of the occluded human mesh recon-
struction by the proposed method are shown in Fig 4.
Specifically, we provide results on several datasets, i.e.,
CMU-Panoptic [7], 3DPW [14], OCHuman [15], and
CrowdPose [9]. As can be seen, human meshes are suc-
cessfully reconstructed under diverse person-to-person oc-
clusion situations. In particular, our model shows reliable



Figure 4. More results of occluded human mesh reconstruction by the proposed method on CMU-Panoptic (1st row), 3DPW (2nd row),
OCHuman (3rd row), and CrowdPose (4-5th rows) datasets.



performance not only in constrained conditions such as lab-
oratory environments (see the first row of Fig. 4), but also
in outdoor circumstances (see the second row of Fig. 4).
Moreover, as can be seen in the third to fifth rows in Fig. 4,
results on sports scenes and real-life images, which contain
complicated inter-person interactions with various dynamic
poses, demonstrate the robustness of the proposed method
against person-to-person occlusions.

4.2. Limitations

Some failure cases of the proposed method are shown in
Fig. 5. As can be seen, the proposed method often suffers
from ambiguities driven by self-occlusions in crowded con-
texts. Specifically, when certain body parts of target per-
sons are occluded by themselves, the network tends to in-
appropriately exploit the reconstruction cue from other visi-
ble body parts, which have similar appearances to occluded
parts, belonging to either the target person (see Fig. 5(a)) or
non-target persons (see Fig. 5(b)). To overcome this limita-
tion, efforts to distinguish invisible parts by self-occlusions
could be made in our future works.

Figure 5. Examples of failure cases by the proposed method.
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