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Supplementary material overview
Given the page limit of CVPR submissions, some of the
contents of our work did not fit within the main body of
the paper. Hence, we include additional details in this
Supplementary Material. Specifically, we expand on the
following topics:

A. Semantic geocell creation
B. Implementation details
C. Ablation study on pretraining captions
D. Ablation study on training datasets
E. Auxiliary data sources
F. Ablation studies on non-distance metrics
G. Additional analyses
H. Deployment to GeoGuessr
I. Acknowledgements

A. Semantic geocell creation
In the body of our work, we described how our semantic
geocell creation algorithm works on a high level. Similar
to approaches in prior literature such as Theiner et al. [33],
we create a hierarchy of administrative areas and merge
adjacent geocells until a set minimum number of training
samples per geocell is reached. This, however, results in
a highly imbalanced classification problem, especially for
larger training datasets. A major contribution of our work is
that we define a method to split larger geocells into smaller,
still semantically meaningful cells, by leveraging the infor-
mation contained in the training data’s geolocations. The
key insight is that locations from most training distributions
tend to cluster around popular places and landmarks, and
these clusters can be extracted.

Algorithm 1 shows a slightly simplified version of how
we split large geocells into multiple smaller ones without
the help of administrative boundary information, resulting
in a much more balanced geocell classification dataset. As
one can see, the algorithm only depends on the geocell
boundaries or shape definitions g, the training dataset x, an
OPTICS clustering algorithm with parameters p (optionally
round-specific parameters pj), and a minimum cell size
MINSIZE. The VORONOI algorithm takes a set of points
as input and outputs a new geocell shape defined by these
points which can be removed from the original cell shape.

Figure 5 shows a small geocell that has been extracted
from a larger geocell covering the entire city of Vienna,
Austria, via Voronoi tessellation. The partitions within the

blue geocells are the result of the Voronoi tesselation algo-
rithm assigning to each training sample all geographic area
to which it is closest.

Algorithm 1 Simplified Semantic Geocell Splitting
Input: geocell boundaries g, training samples x,
OPTICS parameters p, minimum cell size MINSIZE.
Initialize j = 1.
repeat

Initialize C = OPTICS(pj).
for gi in g do

Define xi = {xk|xk 2 x ^ xk 2 gi}.
repeat

Cluster c = C(xi).
cmax = ck where |xi,k| � |xi,l|8l.
if |cmax| > MINSIZE and |x \ xi,k| > MINSIZE
then

New cell gnew = VORONOI(xi,k).
gi = gi \ gnew.
Assign xi to cells i and new, respectively.

end if
until convergence

end for
j = j + 1

until j is |p|

Figure 5. Voronoi tessellation applied in the process of geocell
creation for points of an OPTICS cluster in Vienna, Austria, based
on political boundaries from GADM [10].



B. Implementation details
In this section, we describe the implementation details of
PIGEON and PIGEOTTO and further illustrate how the two
models differ from each other.

B.1. Model input
The biggest difference between PIGEON and PIGEOTTO
is that PIGEON takes a four-image Street View panorama
as input, whereas PIGEOTTO takes a single image as input.
Images are always cropped to a square aspect ratio before
being fed into the models. Figure 6 shows a representa-
tive input for PIGEON, depicting a 360-degree, four-image
Street View panorama taken in Pegswood, England.

Figure 6. Four images comprising a 360-degree panorama from a
location in Pegswood, England, in our dataset.

PIGEOTTO’s training dataset is vastly different to PI-
GEON’s Street View input; the model takes a single image
as input and was trained on a highly diverse image geolo-
calization dataset. Figure 7 shows eight images sampled
from the MediaEval 2016 dataset [20] which was derived
from user-uploaded Flickr images. It is clearly apparent that
some of the images are extremely difficult to geolocalize,
for example because they were taken indoors.

Figure 7. Eight samples from the MediaEval 2016 dataset [20].

B.2. Pretraining
Table 4 shows the hyperparameter settings employed for our
contrastive pretraining of CLIP for the task of image ge-
olocalization. The CLIP weights were initialized with the
pretrained weights of OpenAI’s CLIP implementation.4

4https://huggingface.co/openai/clip-vit-large-
patch14-336.

Table 4. Hyperparameter settings for pretraining CLIP’s vision
encoder for the task of image geolocalization.

Parameter PIGEON PIGEOTTO
GPU Type A100 80GB A100 80GB
Number of GPUs 4 4
Dataset Source Street View Flickr
Dataset Size (Samples) ⇠ 1M ⇠ 4.2M
Batch Size 32 32
Gradient Accumulation Steps 8 8
Optimizer AdamW AdamW
Learning Rate 1e�6 5e�7

Weight Decay 1e�3 1e�3

Warmup (Epochs) 0.2 0.02
Training Epochs 3 2
Adam �1 0.9 0.9
Adam �2 0.98 0.98

B.3. Fine-tuning
The fine-tuning of PIGEON and PIGEOTTO consists of
adding a linear layer on top of the pretrained vision en-
coder, mapping image embeddings to a fixed number of
geocells. During this process, the weights of the vision en-
coder remain frozen. Table 5 shows the hyperparameters
used in this training step. Both PIGEON and PIGEOTTO
were trained until convergence.

Table 5. Hyperparameter settings for fine-tuning CLIP’s vision
encoder via a linear projection layer onto geocells.

Parameter PIGEON PIGEOTTO
GPU Type A100 80GB A100 80GB
Number of GPUs 1 1
Dataset Source Street View Flickr + Wikipedia
Dataset Size (Samples) ⇠ 100k ⇠ 4.5M
Number of Geocells 2,203 2,076
Haversine Smoothing ⌧ 75 65
Batch Size 1024 1024
Gradient Accumulation Steps 1 1
Optimizer AdamW AdamW
Learning Rate 5e�5 2e�5

Weight Decay 0.01 0.01
Training Epochs Convergence Convergence
Adam �1 0.9 0.9
Adam �2 0.999 0.999

B.4. Hierarchical refinement
We use a hierarchical retrieval mechanism over location
clusters to refine predictions. As a first step, location clus-
ters are pre-computed using an OPTICS clustering algo-
rithm. Then, during inference, a cluster is selected accord-
ing to Equation (5). Finally, the location guess is refined
within the top selected cluster. The refinement process is
also dependent on a number of parameters, the most impor-
tant of which are listed in Table 6 and contrasted between
PIGEON and PIGEOTTO.

https://huggingface.co/openai/clip-vit-large-patch14-336
https://huggingface.co/openai/clip-vit-large-patch14-336


Table 6. Parameters used in our hierarchical retrieval mechanism
over location clusters.

Parameter PIGEON PIGEOTTO
Number of Geocell Candidates 5 40
Maximum Refinement Distance (km) 1,000 None
Distance Metric Euclidian Euclidian
Softmax Temperature 1.6 0.6
OPTICS Min Samples (Cluster Creation) 3 10
OPTICS xi (Cluster Creation) 0.15 0.1

C. Ablation study on pretraining captions
In Section 3.3, we describe a novel multi-task contrastive
pretraining method for image geolocalization. The ablation
in Table 7 shows that our pretraining reduces PIGEON’s
median kilometer error significantly from 57.8 to 44.4 kilo-
meters (�23.3%) versus no pretraining as in Wu and Huang
[40]. Our innovation is that we are the first to design a multi-
modal and multi-task contrastive pretraining objective for
CLIP through the use of synthetic captions, and further find
that the multi-task component of our method is highly ef-
fective; we observe a positive transfer from the auxiliary
tasks embedded in our captions to the task of geolocaliza-
tion, reducing our median error from 49.4 to 44.4 kilome-
ters (�10.2%) compared to pretraining solely with location
captions as in Haas et al. [13]. Our multi-task contrastive
pretraining method is general enough that it could also be
employed in other problem domains.

Table 7. Ablation study of CLIP pretraining captions for PIGEON
on a holdout dataset of 5,000 Street View locations.

Ablation Median Error Distance (% @ km)
km 1 km 25 km 200 km 750 km 2,500 km

PIGEON [location + auxiliary captions] 44.35 5.36 40.36 78.28 94.52 98.56
PIGEON [location captions as in [13]] 49.37 4.62 38.46 77.10 94.34 98.48
PIGEON [no pretraining as in [40]] 57.80 4.48 36.18 74.88 93.24 98.04

D. Ablation study on training datasets
Section 4.1 in the body of our paper describes the different
datasets used to train PIGEON and PIGEOTTO. While
PIGEON was purely trained on Street View imagery, the
training dataset for PIGEOTTO contains a combination of
4,166,186 geo-tagged images from the MediaEval 2016
dataset [20] and 340,579 images from the Google Land-
marks v2 dataset [39]. Prior works’ benchmark results,
listed in Table 3, employ a diverse range of training datasets
with the goal of building the best performing and robust
image geolocalization models. Since the prior SOTA model
Geodecoder [7] was exclusively trained on the MediaEval
2016 dataset [20], we include an additional training dataset
ablation for PIGEOTTO in Table 8 to distinguish data
selection from system design effects.

Table 8. Ablation study of PIGEOTTO’s Google Landmarks v2
[39] data (340k images) against prior SOTA on five benchmarks.

Benchmark Method
Median Distance (% @ km)
Error Street City Region Country Continent

km 1 km 25 km 200 km 750 km 2,500 km

IM2GPS [14]
GeoDecoder [7] ⇠ 25 22.1 50.2 69.0 80.0 89.1
PIGEOTTO [ME16] 75.6 11.8 38.8 63.7 80.6 91.1
PIGEOTTO [ME16 + Landmarks] 70.5 14.8 40.9 63.3 82.3 91.1

IM2GPS3k [37]
GeoDecoder [7] > 200 12.8 33.5 45.9 61.0 76.1
PIGEOTTO [ME16] 163.6 10.9 35.8 52.4 70.7 84.4
PIGEOTTO [ME16 + Landmarks] 147.3 11.3 36.7 53.8 72.4 85.3

YFCC4k [37]
GeoDecoder [7] ⇠ 750 10.3 24.4 33.9 50.0 68.7
PIGEOTTO [ME16] 418.8 9.5 22.5 38.8 60.7 76.9
PIGEOTTO [ME16 + Landmarks] 383.0 10.4 23.7 40.6 62.2 77.7

YFCC26k [25]
GeoDecoder [7] ⇠ 750 10.1 23.9 34.1 49.6 69.0
PIGEOTTO [ME16] 356.5 10.1 24.6 41.3 62.6 78.7
PIGEOTTO [ME16 + Landmarks] 333.3 10.5 25.8 42.7 63.2 79.0

GWS15k [7]
GeoDecoder [7] ⇠ 2,500 0.7 1.5 8.7 26.9 50.5
PIGEOTTO [ME16] 440.8 0.1 8.7 30.1 64.0 84.7
PIGEOTTO [ME16 + Landmarks] 415.4 0.7 9.2 31.2 65.7 85.1

In Table 8, we observe that even when trained using
the same data (ME16 [20]), PIGEOTTO outperforms the
prior SOTA Geodecoder [7] by a large margin on four out
of five benchmarks. The improvements in benchmark re-
sults can largely be attributed to the end-to-end design of
PIGEOTTO, not our final training data selection. Still, we
find that including the 340,579 landmark images [39] im-
proves our model’s performance across all benchmarks and
distance metrics. We further note that both PIGEOTTO ver-
sions are also more robust than Clark et al. [7]’s Geode-
coder by almost an order of magnitude, reducing the me-
dian geolocalization error by more than 5x on the out-of-
distribution (OOD) benchmark dataset GWS15k [7]. Given
the benchmark and OOD results, PIGEOTTO is currently
the only planet-scale image geolocalization model robust to
location and image distribution shifts.

E. Auxiliary data sources
Our work relies on a wide range of auxiliary data that we
can infer from each image’s location metadata. This section
details external datasets we are using either in the process
of label creation or multi-task training.

Administrative area polygons. We obtain data on coun-
try areas from the Database of Global Administrative Ar-
eas (GADM) [10]. Additionally, we obtain data on sev-
eral granularities of political boundaries of administrative
areas released by The William & Mary Geospatial Evalu-
ation and Observation Lab on GitHub. These data sources
are used both in geocell label creation as well as to generate
synthetic pretraining captions. The political boundaries are
used in the semantic geocell creation process with Voronoi
tesselations, as displayed in Figure 5.

Köppen-Geiger climate zones. We obtain data on global
climate zones through the Köppen-Geiger climate classifi-
cation system [4], visualized in Figure 8. We use climate
zone data both for synthetic caption generation for pretrain-

https://geodata.ucdavis.edu/gadm/gadm4.1/gadm_410-levels.zip
https://geodata.ucdavis.edu/gadm/gadm4.1/gadm_410-levels.zip
https://github.com/wmgeolab
https://github.com/wmgeolab
https://figshare.com/ndownloader/files/12407516
https://figshare.com/ndownloader/files/12407516


Figure 8. Map of planet–scale Köppen-Geiger climate zones in our dataset. Adapted from Beck et al. [4].

ing but also employ it in PIGEON’s ablation study as a
classification task (ablating ”Multi-task Prediction Heads”),
described in Tables 1 and 2. The final PIGEON and PI-
GEOTTO versions only use climate zone data as part of
their CLIP pretraining captions.

Elevation. We obtain data on elevation through the
United States Geological Survey’s Earth Resources Obser-
vation and Science (EROS) Center. As elevation data was
missing for several locations in our dataset, we augmented
our data with missing values from parts of Alaska5 and Eu-
rope6. We use elevation data exclusively in a multi-task pre-
diction setting via a log-transformed regression.

GHSL population density. We obtain data on popula-
tion density through the Global Human Settlement Layer
(GHSL). This data is also used in a multi-task prediction
setting via a log-transformed regression.

WorldClim 2 temperature and precipitation. We ob-
tain data on the average temperature, annual temperature
range, average precipitation, and annual precipitation range
through WorldClim 2. Similarly to prior auxiliary data,
temperate and precipitation data is used in a multi-task re-
gression setup, however, temperature values are not log-
transformed before training.

Driving side of the road. We obtain data on the traffic
direction through WorldStandards. This data is exclusively
employed in generating synthetic pretraining captions.

5http : / / stacks . stanford . edu / file / druid :
sg962yb7367/data.zip

6https://land.copernicus.eu/imagery-in-situ/eu-
dem/eu-dem-v1.1/view

F. Ablation studies on non-distance metrics
Beyond the distance-based analysis of PIGEON described
in the body of the paper, we also run ablation studies on
non-distance metrics related to auxiliary data described
in Appendix E. In Table 9, we observe that our final
PIGEON model version actually does not perform best
on non-distance metrics related to a location’s elevation,
population density, season, and climate. The reason for this
is that PIGEON does not share trainable model weights
between the multi-task prediction heads and the location
prediction tasks because joint multi-task training was
already performed implicitly at the pretraining stage via
synthetic captions. When sharing parameters between
prediction heads (ablating “Freezing Last Clip Layer”), a
positive transfer between the tasks is observed and better
performances are achieved on these auxiliary prediction
tasks.

A key takeaway from Table 9 remains that geographical,
climate, demographic, and geological features can all be in-
ferred from Street View images with potential applications
in climate research and related fields.

Table 9. Results from the ablation study beyond the standard dis-
tance metrics, inferring geographical, climate, demographic, and
geological labels from Street View imagery.

Elevation Pop. Density Temp. Precipitation Month Climate Zone
Ablation Error Error Error Error Accuracy Accuracy

m people/km2 �C mm/day % %

PIGEON 149.6 1,119 1.26 15.08 45.42 75.22

� Freezing Last CLIP Layer After Pretraining 132.8 1,072 1.18 12.82 50.64 75.76
� Contrastive CLIP Pretraining 147.1 1,064 1.36 14.71 45.74 74.66
� Semantic Geocells 141.7 1,094 1.37 14.48 45.74 74.10

https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-1
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-1
https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/GHSL/GHS_POP_GLOBE_R2022A/GHS_POP_E2020_GLOBE_R2022A_54009_1000/V1-0/GHS_POP_E2020_GLOBE_R2022A_54009_1000_V1_0.zip
https://www.worldclim.org/data/worldclim21.html
https://www.worldstandards.eu/cars/list-of-left-driving-countries/
http://stacks.stanford.edu/file/druid:sg962yb7367/data.zip
http://stacks.stanford.edu/file/druid:sg962yb7367/data.zip
https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1/view
https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1/view


(a) Attention attribution map for an image in Canada. (b) Attention attribution map for an image in New Zealand.

Figure 9. Attention attribution maps for two locations in our Street View validation dataset.

G. Additional analyses

G.1. Attention attribution examples

The contrastive pretraining used in CLIP gives the model
a deeper semantic understanding of scenes and thereby en-
ables it to discover strategies that are interpretable by hu-
mans. We observe that our model was able to learn strate-
gies that are taught in online GeoGuessr guides without ever
having been directly supervised to learn these strategies.

For the visualizations in Figure 9, we generated attribu-
tion maps for images from the validation dataset and the
corresponding ground-truth caption, e.g. “This photo is lo-
cated in Canada”. Indeed, the model pays attention to fea-
tures that professional GeoGuessr players consider impor-
tant, like vegetation, road markings, utility posts, and sig-
nage, for example. This makes the strong performance of
the model explainable and could furthermore enable the dis-
covery of new strategies that professional players are not yet
aware of.

G.2. Urban vs. rural performance

In order to elucidate interesting patterns in our model’s be-
havior, we investigate whether a performance differential
exists for PIGEON in inferring the locations of urban ver-
sus rural images. Presumably, the density of relevant cues
should be higher in Street View images from urban loca-
tions. Our analysis focuses on PIGEON because it has been
trained on many rural images, whereas PIGEOTTO was
trained predominantly on user-captured, urban images.

We bin our holdout Street View dataset into quintiles by
population density and visualize PIGEON’s median kilo-
meter error. In Figure 10, we observe that higher popula-
tion density indeed correlates with much more precise lo-
cation predictions, reaching a median error of less than 10
kilometers for the 20 percent of locations with the highest
population density.

Figure 10. Median km error by population density quintile.

G.3. Qualitative analyses of failure cases

Despite our models’ generally high accuracy in estimating
image geolocations, there were several scenarios where they
failed. We assess situations where our models were most
uncertain and also identify the types of images for which
our models made incorrect predictions.

Uncertainty. By computing the entropy over the proba-
bilities of all geocells for each location in our validation set,
we identified images where our models were most uncer-
tain. For PIGEOTTO, these images were almost exclusively
corrupted images remaining in the original Flickr corpus.
For PIGEON, however, which was solely trained on Street
View images, we observe some interesting failure cases in
Figure 11. The features of poorly classified images are
aligned with our intuitions and prior literature about diffi-
cult settings for image geolocation. Figure 11 shows that
images from tunnels, bodies of water, poorly illuminated ar-
eas, forests, indoor areas, and soccer stadiums are amongst
the cases that are the most difficult to pinpoint by PIGEON.



(a) Image from a tunnel. (b) Image from a body of water.

(c) Image from a dark area. (d) Image from a forest.

(e) Image from an indoor area. (f) Image from a soccer stadium.

Figure 11. Examples of images from our test set where PIGEON was the most uncertain about the correct location.

Incorrect Predictions. While for PIGEON, most failure
cases are out-of-distribution (OOD) images that are atypi-
cal for Street View imagery (Figure 11), PIGEOTTO was
trained to be highly robust to distribution shifts with the
goal of being a general image geolocation system. To evalu-
ate in what cases PIGEOTTO fails, we collected representa-
tive images from the YFCC26k [25] test set and plotted PI-
GEOTTO’s predictions against the ground truth coordinates
on a map in Figure 13. We observe that real-world images
(in this case derived from Flickr) are highly diverse, con-
taining both indoor and outdoor images, vast differences in
image depths, blurry images, images of people, filters that
have been applied, and photos taken at night.

PIGEOTTO performs astoundingly well across a wide
range of conditions; it correctly identifies popular places
within circa one kilometer, as demonstrated by the third im-
age in Figure 13 of the Capilano Suspension Bridge near
Vancouver and the fourth image taken around the Kath-
mandu Durbar Square in Nepal. Our model fails in sit-
uations where the image contains very little information
about the location, such as the fifth image containing only
a boye in the sea, the sixth image containing a water bot-
tle, or images taken at night with almost no visible fea-
tures such as the eighth and thirteenth image, albeit in the
later, PIGEOTTO does correctly predict Europe from the
fireworks alone. PIGEOTTO further seems to work sur-
prisingly well in indoor scenarios, even when images are
blurred, as is the first image. Other examples include the
eleventh image where our model still predicts the country
correctly and the last image showing a person drinking from
a red cup, guessed correctly to within 13 kilometers of the

correct location. Finally, while PIGEOTTO confounds the
wine regions of Victoria, Australia and Marlborough, New
Zealand, it still is able to make accurate predictions from the
flora alone, as evidenced by the close-up image of leaves,
correctly guessed to within 671 kilometers.

H. Deployment to GeoGuessr
As part of our quantitative evaluation of PIGEON against
human players, we develop a Chrome extension bot that
uses PIGEON’s coordinate output to directly place guesses
within the game. This section is a high-level overview of
our model serving pipeline.

H.1. Data overlap in live games
When deploying PIGEON in live games against human
players, controlling for locations not in PIGEON’s train-
ing dataset is impossible. Across all live games from Fig-
ure 4, we find that 1.8% of game locations are within less
than 100 meters of any location in our training dataset. This
slight overlap between training and live evaluation locations
is not problematic because top human players would see
more unique locations over the course of their GeoGuessr
career, resulting in an even larger overlap between already
seen and new live data for them.

H.2. Game mode
GeoGuessr can be played in both single and multi-player
modes. In our live performance evaluation of PIGEON, we
decided to focus on GeoGuessr’s Competitive Duels mode,
whereby the user directly competes with an opponent in a
multi-round game with increasing round difficulty. Notably,



(a) Sample image from a GeoGuessr location. (b) Comparison of a guess made by PIGEON and a human player.

Figure 12. Sample screenshots from PIGEON deployed in the GeoGuessr game.

while our GeoGuessr bot simply takes four images spanning
the entire GeoGuessr panorama, other players can addition-
ally move around in the Street View scene for at least 15
seconds which is the minimum time available to the oppo-
nent once a guess is made, resulting in them gathering more
relevant information to refine their prediction. Each guess is
subsequently translated into a GeoGuessr score whose for-
mula we reverse-engineered by recording results from the
game. The formula for the GeoGuessr score on the world
map is approximately:

score(x) = 5000 · e� x
1492.7 , (6)

where x is the prediction error in kilometers.

To provide a better understanding of the GeoGuessr
game, Figure 12 shows two screenshots. The screenshots
were taken while deploying PIGEON in-game against a hu-
man opponent in a blind experiment.

H.3. Chrome extension
We develop a GeoGuessr Chrome extension which is
automatically activated once it detects that a game has
started. It then autonomously places guesses in subsequent
rounds, obtaining coordinate guesses from a PIGEON
model API. The procedure to place a guess in the game
works as follows and is repeated for each round until one
player – PIGEON or its human opponent – has won:

1. Resize the Chrome window to a square aspect ratio.
2. Wait until the Street View scene is fully loaded.
3. Repeat the following for all four cardinal directions:

(a) Hide all UI elements.
(b) Take a screenshot.
(c) Unhide all UI elements.
(d) Rotate by 90� using simulated clicks.

4. Perform a POST request to our backend server with the
four screenshots encoded as Base64 in the payload.

5. Receive the predicted latitude & longitude from our
server.

6. Optional: Random delay before making a guess to make
the model’s behaviour seem more human-like.

7. Place a coordinate guess in the game by sending a re-
quest to GeoGuessr’s internal API via the browser.

8. Collect statistics about the true location & human perfor-
mance and submit them to the server using an additional
POST request.

H.4. Inference API

To serve image geolocalization predictions to our Chrome
extension, we write code to serve PIGEON via an API on a
remote machine with an A100 GPU. We utilize the Python
library FastAPI to implement two API endpoints:

https://fastapi.tiangolo.com/


• Inference endpoint. A POST endpoint that receives
either one or four images, passes them through a pre-
processing pipeline and then runs inference on a GPU.
In addition, it saves the images temporarily on disk for
later evaluation. Finally, the API returns the latitude and
longitude predictions of PIGEON to the client.

• Statistics endpoint. A POST endpoint that receives
the statistics about the correct location, the score and
distance of our guess, and human performance. This
data is saved on disk and later used to generate summary
statistics.

Our work demonstrates that PIGEON can effectively be
applied in real-time scenarios as a system capable of end-
to-end planet-scale image geolocalization.
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Figure 13. Example predictions of PIGEOTTO on fourteen images from the YFCC26k [25] test set.
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