
Supplementary Materials
Clockwork Diffusion: Efficient Generation With Model-Step Distillation

Amirhossein Habibian* Amir Ghodrati* Noor Fathima* Guillaume Sautiere
Risheek Garrepalli Fatih Porikli Jens Petersen

Qualcomm AI Research†

{ahabibia, ghodrati, noor, gsautie, rgarrepa, fporikli, jpeterse}@qti.qualcomm.com

A. Clockwork details

UNet Architecture In Fig. 1 we show a detailed
schematic of the SD UNet architecture. The parts in pink
are replaced by our lightweight adaptor. We also show pa-
rameter counts and GMACs per block. In ablations we var-
ied the level at which we introduce the adaptor, as shown
in Table 3 of the main body. There we compare “Stage 1
(res 32x32)” (our default setup) and “Stage 2 (res 16x16)”
(a variant where DOWN-1 and UP-2 remain in the model),
finding better performance for the former. Interestingly, our
sampling analysis suggested that introducing the adaptor at
such a high resolution, replacing most parts of the UNet,
should lead to poor performance. However, this is only true
if we replace multiple consecutive steps (see adaptor clock
ablations in Table 3 of the main body). By alternating adap-
tor and full UNet passes we recover much of the perfor-
mance, and can replace more parts of the UNet than would
otherwise be possible.

Adaptor Architecture In Fig. 2 we show a schematic of
our UNet-like adaptor architecture, as discussed in abla-
tions (Section 5.4 of the main paper). In addition to our
ResNet-like architecture (Fig. 3 of the main paper) We tried
1) a UNet-like convolutional architecture with 640 chan-
nels in each block and 4 ResNet blocks in the middle level
(N = 4), 2) a lighter variant of it with 96 channels and
2 ResNet blocks in the middle level. While all adaptors
provide comparable performance, the ResNet-like adaptor
obtains better quality-complexity trade-off.

Training We provide pseudocode for our unrolled train-
ing in Algorithm 1.

*Equal contribution
†Qualcomm AI Research is an initiative of Qualcomm Technologies,

Inc

Algorithm 1 Adaptor training with unrolled trajectories

Require: Teacher model ϵ
Require: Adaptor ϕθ

Require: Prompt set P
Require: Clock schedule C(t)

for Ne epochs do
PD ← RandomSubsetD(P) ▷ optional
D ← GenerateTrajectories(PD, ϵ)
for all Trajectory & prompt (T, text) ∈ D do

for all (t, rint , routt routt+1) ∈ T do
if C(t) = 1 then

r̂outt ← ϕθ

(
rint , routt+1, temb, textemb

)
L ← ∥routt − r̂outt ∥2
θ ← θ − γ∇L

end if
end for

end for
end for

Steps FID CLIP TFLOPs

DPM++ 8 24.22 0.302 9.5
+ Clockwork 8 23.21 0.296 5.9

DPM 8 24.32 0.301 9.5
+ Clockwork 8 23.24 0.296 5.9

PNDM 8 35.64 0.272 9.5
+ Clockwork 8 33.15 0.280 5.9

DDIM 8 34.72 0.287 9.5
+ Clockwork 8 38.38 0.280 5.9

Table 1. Clockwork works with different schedulers.

B. Ablations

Scheduler. We evaluate Clockwork across multiple
schedulers: DPM++, DPM, PNDM, and DDIM. With the
exception of DDIM, Clockwork improves FID at negligible
change to the CLIP score, while reducing FLOPs by 38%.

1

C
on

v2
d

R
es

N
et

B
lo

ck
T

ra
ns

fo
rm

er

D
ow

n
S

am
pl

e

R
es

N
et

B
lo

ck
T

ra
ns

fo
rm

er

R
es

N
et

B
lo

ck

R
es

N
et

B
lo

ck

R
es

N
et

B
lo

ck
T

ra
ns

fo
rm

er

D
ow

n
S

am
pl

e

R
es

N
et

B
lo

ck
T

ra
ns

fo
rm

er

R
es

N
et

B
lo

ck
T

ra
ns

fo
rm

er

D
ow

n
S

am
pl

e

R
es

N
et

B
lo

ck
T

ra
ns

fo
rm

er

R
es

N
et

B
lo

ck
T

ra
ns

fo
rm

er
R

es
N

et
B

lo
ck

R
es

N
et

B
lo

ck

R
es

N
et

B
lo

ck

R
es

N
et

B
lo

ck
U

pS
am

pl
e

R
es

N
et

B
lo

ck
T

ra
ns

fo
rm

er
U

pS
am

pl
e

R
es

N
et

B
lo

ck
T

ra
ns

fo
rm

er

R
es

N
et

B
lo

ck
T

ra
ns

fo
rm

er

R
es

N
et

B
lo

ck
T

ra
ns

fo
rm

er
U

pS
am

pl
e

R
es

N
et

B
lo

ck
T

ra
ns

fo
rm

er

R
es

N
et

B
lo

ck
T

ra
ns

fo
rm

er

C
on

v2
d

R
es

N
et

B
lo

ck
T

ra
ns

fo
rm

er

R
es

N
et

B
lo

ck
T

ra
ns

fo
rm

er

R
es

N
et

B
lo

ck
T

ra
ns

fo
rm

er

D
O

W
N

-0
10

.5
2M

pa
ra

m
s

(1
.2

2%
)

32
.9

 G
M

A
C

s
(9

.7
2%

)

D
O

W
N

-1
36

.8
2M

 p
ar

am
s

(4
.2

8%
)

31
.3

 G
M

A
C

s
(9

.2
4%

)

D
O

W
N

-2
14

0.
0M

 p
ar

am
s

(1
6.

29
%

)
31

.5
 G

M
A

C
s

(9
.2

9%
)

D
O

W
N

-3
62

.2
8M

 p
ar

am
s

(7
.2

5%
)

3.
78

G
M

A
C

s
(1

.1
2%

)

U
P

-0
16

2.
2M

 p
ar

am
s

(1
8.

88
%

)
12

.9
G

M
A

C
s

(3
.8

1%
)

U
P

-1
25

8.
3M

 p
ar

am
s

(3
0.

06
%

)
75

.1
 G

M
A

C
s

(2
2.

18
%

)

U
P

-2
71

.4
1M

 p
ar

am
s

(8
.3

1%
)

79
.1

 G
M

A
C

s
(2

3.
35

%
)

U
P

-3
18

.8
1M

 p
ar

am
s

(2
.1

9%
)

66
.0

G
M

A
C

s
(1

9.
48

%
%

)

M
ID

97
.0

4M
 p

ar
am

s
(1

1.
29

%
)

6.
03

G
M

A
C

s
(1

.7
8%

)

T
O

T
A

L
85

9.
52

M
 p

ar
am

s
33

8.
61

G
M

A
C

s

32
0x

64
x6

4

32
0x

32
x3

2

64
0x

16
x1

6

12
80

x8
x8

12
80

x8
x8

12
80

x8
x8

12
80

x1
6x

16

12
80

x3
2x

32

64
0x

64
x6

4

Fi
gu

re
1.

D
et

ai
le

d
vi

ew
of

th
e

SD
U

N
et

ar
ch

ite
ct

ur
e.

W
e

re
pl

ac
e

th
e

pi
nk

/p
ur

pl
e

pa
rt

s
w

ith
a

lig
ht

w
ei

gh
t

ad
ap

to
r,

th
e

in
pu

t
to

w
hi

ch
ha

s
3
2
×

3
2

sp
at

ia
l

re
so

lu
tio

n.
Fo

r
th

e
ab

la
tio

ns
in

th
e

m
ai

n
bo

dy
w

e
al

so
tr

ie
d

le
av

in
g

D
O

W
N

-1
an

d
U

P-
2

in
th

e
hi

gh
er

-r
es

ol
ut

io
n

pa
th

,o
nl

y
re

pl
ac

in
g

bl
oc

ks
be

lo
w

.

Figure 2. Architecture of a variant of the adaptor: UNet and UNet-
light. For UNet we set C = 640 and N = 4, while for UNet-light
we set C = 96 and N = 2.

Steps FID [↓] CLIP [↑] GFLOPs

Distilled Efficient UNet 8 25.75 0.297 150

Adaptor Input
rINt + temb 8 40.73 0.262 150
rOUT
t+1 + temb 8 24.76 0.295 150

+ rINt 8 24.45 0.295 150
+ textemb 8 24.45 0.295 150

Model Distillation
rINt + temb + textemb 8 117.64 0.06 150

Table 2. Ablation of adaptor inputs. We use the MSCOCO-2017
dataset, Distilled Efficient UNet as backbone and a clock of 2 (ex-
cept for Model distillation where we use adaptor for all the steps)
. FLOPs are reported for 1 forward step of UNet with adaptor.

Adaptor inputs. We vary the inputs to the adaptor ϕθ. In
the simplest version, we only input rint and the time em-
bedding. It leads to a poor FID and CLIP. Using only routt+1

provides good performance, indicating the importance of
using features from previous steps. Adding rint helps for a
better performance, showcasing the role of the early high-
res layers of the UNet. Finally, adding the pooled prompt
embedding textemb doesn’t change FID and CLIP scores.

Model Distillation In Tab. 2 In previous ablation, we
used clock of 2. In this ablation, we explore the option to
distill the low resolution layers of ϵ into the adaptor ϕθ, for
all the steps. Here we train the adaptor in a typical model
distillation setting - i.e., the adaptor ϕθ receives as input the
downsampled features at current timesteps rint along with
the time and text embeddings temb and textemb. It learns to
predict upsampled features at current timestep routt . During
inference, we use the adaptor during all sampling steps. Re-
placing the lower-resolution layers of ϵ with a lightweight
adaptor results in worse performance. It is crucial that the
adaptor be used with a clock schedule along with input from
a previous upsampled latent.

Timings for different GPU models In Tab. 3 we report
latency of different UNet backbones on different GPU mod-

Latency [ms] RTX 3080 RTX 2080Ti V100 A100

SD v1.5 454 589 453 235
+ Clockwork 341 440 360 183

(−24.9%) (−25.3%) (−20.5%) (−22.1%)

Eff. UNet 330 427 312 176
+ Clockwork 213 268 212 118

(−35.5%) (−37.2%) (−32.1%) (−33.0%)

Eff. UNet (distilled) 240 302 245 191
+ Clockwork 154 190 159 122

(−35.8%) (−37.1%) (−35.1%) (−36.1%)

Table 3. Latency improvements [ms] using Clockwork on different
GPU models. All measurements are averaged over 10 runs, using
DPM++ with 8 steps and batch size 1 (distilled) or 2 (for classifier-
free guidance).

els.

C. Additional perturbation analyses
In Section 3 of the main body, we introduced perturbation
experiments to demonstrate how lower-resolution features
in diffusion UNets are more robust to perturbations, and
thus amenable to distillation with more lightweight compo-
nents. As a quick reminder, we mix a given representation
with a random noise sample by assuming that the feature
map is normal f ∼ N (µf , σ

2
f). We then draw a random

sample z ∼ N (0, σ2
f) and update the feature map with:

f ← µf +
√
α · (f − µf) +

√
1− α · z (1)

For the example in the main body we set α = 0.3, so that
the signal is dominated by the noise. In Fig. 3 we show the
same plot, but using weaker perturbations with α = 0.6.
The general behaviour is the same: lower-resolution pertur-
bations result in semantic changes, and are less influential in
later steps. High-resolution perturbations result in artifacts,
but overall changes are less pronounced than with stronger
perturbations.
Interestingly, we can also fully replace feature maps with
noise, i.e. use α = 0.0. The result is shown in
Fig. 4. Changes are much stronger than before, but
lower-resolution perturbations still result mostly in seman-
tic changes. However, the output is of lower perceptual
quality.
For the analysis in the main body, as well as Fig. 3 and
Fig. 4, we perturb the output of the three upsampling layers
in the SD UNet. We perform the same analysis for other
layers in Fig. 5. Specifically, there we perturb the output of
the bottleneck layer, the three downsampling layers, and the
first convolutional layer of the network (which is also one
of the skip connections). Qualitatively, findings remain the
same, but perturbation of a given downsampling layer out-
put leads to more semantic changes (as opposed to artifacts)
compared to its upsampling counterpart.

Inversion
SD version 1.5
Sampler DDIM
Inversion prompt “a <style> of an <instance>”
Extract reverse False

Generation
SD version 1.5
Sampler DDIM
Guidance scale 15.0 (for both real and fake images)
Negative prompt “ugly, blurry, black, low res, unrealistic”
τA 0.5
τf 0.8

Table 4. Plug-and-Play hyper-parameters in inversion and gener-
ation. τA and τf are expressed as fraction of the sampling trajec-
tory. For instance, τf = 0.8 means that for the first 80% steps in
the generation, convolutional features will be injected. If one uses
10 DDIM steps, this means that for the first 8 steps, convolutional
features will be injected.

Finally, we quantify the L2 distance to the unperturbed
output as a function of the step where we start perturba-
tion. Fig. 6 corresponds to the perturbations from the main
body, while Fig. 7 shows the same but corresponds to the
downsampling perturbations of Fig. 5. Confirming what we
saw visually, perturbations to low-resolution layers result in
smaller changes to the final output than the same perturba-
tions to higher-resolution features.

D. Text-Guided Image Editing

D.1. Implementation Details

We base our implementation of Plug-and-Play (PnP) [2] off
of the official pnp-diffusers implementation. We summarize
the different hyper-parameters used to generate the results
for both the baseline and Clockworkvariant of PnP in Tab. 4.
Additionally, while conceptually similar we outline a cou-
ple of important differences between what the original pa-
per describes and what the code implements. Since we use
this code to compute latency and FLOP, we will go over the
differences and explain how both are computed. We refer
to Fig. 8 for a visual reference of the implementation of the
“pnp-diffusers”. For a better understanding, we encourage
the reader to compare it to Fig. 2 from the PnP [2] paper.

When are features cached? The paper describes that the
source image is first inverted, and only then features are
cached during DDIM sampling. They are only cached at
sampling step t falling within the injection schedule, which
is defined by the two hyper parameters τf and τA which
corresponds to the sampling steps until which feature and
self-attention will be injected respectively. The code, in-
stead of caching features during DDIM generation at time
steps corresponding to injection schedule, caches during all
DDIM inversion steps. This in theory could avoid running

DDIM sampling using the source or no prompt However as
we will see in the next paragraph, since the features are not
directly cached but the latents are, we end up spending the
compute on DDIM sampling anyway.

What is cached? The paper describes the caching of spa-
tial features from decoder layers f4t along with their self-
attention Al

t, where 4 and l indicate layer indices. The im-
plementation trades off memory for compute by caching the
latent xt instead, and recomputes the activations on the fly
by stacking the cached latent along the batch axis along with
an empty prompt. The code does not optimize this opera-
tion and stacks such latent irrespective of whether it will be
injected, which results in a batch size of 3 throughout the
whole sampling trajectory: (1) unconditional cached latent
forward (2) latent conditioned on target prompt and (3) la-
tent conditioned on negative prompt. This has implications
on the latency and complexity of the solution, and we re-
flected it on the FLOP count, we show the formula we used
in Eq. (3).
Of note, this implementation which caches latents instead
of features has a specific advantage for Clockwork, as it
enables mismatching inversion and generation steps and
clock. During inversion, when the latents are cached, it does
not matter whether it is obtained using a full UNet pass or an
adaptor pass. During generation, when the features should
be injected, the cached latent is simply ran through the UNet
to obtain the features on-the-fly. This is illustrated in Fig. 8
where features are injected at step t + 1 during the gener-
ation although the adaptor was used at the corresponding
step during inversion.

How do we compute FLOP for PnP? To compute FLOP,
we need to understand what data is passed through which
network during inversion and generation. Summarizing pre-
vious paragraphs, we know that:
• inversion is ran with a batch size of 1 with the source

prompt only.
• generation is ran with a batch size of 3. The first ele-

ment in the batch corresponds to the cached latent and
the empty prompt. The other two corresponds to the typ-
ical classifier-free guidance UNet calls using the target
prompt and negative prompt.

• both during inversion and generation, if the adaptor is
used, only the higher-res part of the original UNet will
be run, ϵH .

Let us denote N and C the number of steps and the clock,
the indices I and G standing for inversion and generation
respectively. We first count the number of full UNet pass
in each, using integer division Nfull

I = NI div CI (we
follow similar logic for Nfull

G . Additionally, we use FLOP
estimate for a single forward pass with batch size of 1 in

https://github.com/MichalGeyer/pnp-diffusers/tree/5d6345f4fe914993ca89765d58f50163f7b823a3

Figure 3. Reproduction of Figure 2 from the main body, using α = 0.6 (where Figure 2 uses α = 0.3). This corresponds to a weaker
perturbation, which results in outputs that are visually closer to the reference.

Figure 4. Reproduction of Figure 2 from the main body, using α = 0.0 (where Figure 2 uses α = 0.3). This corresponds to full perturbation
of the representation, i.e. the representation is completely replaced by noise in each step. Perturbation of low-resolution features still mostly
results in semantic changes, whereas perturbation of higher-resolution features leads to artifacts.

UNet, Fϵ = 677.8 GFLOPs, and UNet with identity adap-
tor, FϵH+ϕ = FϵH = 228.4 GFLOPs. The estimates are
obtained using the DeepSpeed library [1]. Finally, we ob-
tain the FLOP count F as follows:

FI = Nfull
I · Fϵ + (NI −Nfull

I) · FϵH (2)

FG = 3 ·
(
Nfull

G · Fϵ + (NG −Nfull
G) · FϵH

)
(3)

F = FI + FG (4)

How do we compute latency for PnP? As described
in Section 5, we only compute latency of the inversion
and generation loops using PyTorch’s benchmark utilities.
In particular, we exclude from latency computation any
“fixed” cost like VAE decoding and text encoding. Ad-
ditionally, similar to the FLOP computation, we did not
perform optimization over the official PnP implementation,
which leads to a batch size of 1 in the inversion loop, and a
batch size of 3 in the generation loop.

https://gist.github.com/sayakpaul/27aec6bca7eb7b0e0aa4112205850335

Figure 5. Reproduction of Figure 2 from the main body, perturbation different layers. Figure 2 perturbs the outputs of the 3 upsampling
layers in the SD UNet, here we perturb the outputs of the 3 downsampling layers as well as the bottleneck and the first input convolution.
Qualitative findings remain the same.

0 2 4 6 8 10 12 14 16 18 20
Perturb from step ...

0

25

50

75

100

L2
 D

ist
an

ce
 to

 u
np

er
tu

rb
ed

 o
ut

pu
t

Low-res features
Mid-res features
High-res features

Figure 6. L2 distance to the unperturbed output, when perturbing
representations with noise (α = 0.7), starting after a given number
of steps. This quantifies what is shown visually in Figure 2 in
the main body. Lower-resolution representations are much more
robust to perturbations, and converge to the unperturbed output
faster.

Interplay between injection and adaptor. The adaptor
replaces the lower resolution part of the UNet ϵL. Based
on where we split the UNet between low- and high-res, it

0 2 4 6 8 10 12 14 16 18 20
Perturb from step ...

0

25

50

75

100

L2
 D

ist
an

ce
 to

 u
np

er
tu

rb
ed

 o
ut

pu
t

Bottleneck
Downsample 2
Downsample 1
Downsample 0
In-convolution

Figure 7. L2 distance to the unperturbed output, when perturbing
representations with noise (α = 0.7), starting after a given num-
ber of steps. This quantifies what is shown visually in Figure 5.
Lower-resolution representations are much more robust to pertur-
bations, and converge to the unperturbed output faster.

turns out all layers which undergo injection are skipped if
adaptor ϕ is ran instead of ϵL. Hence, when adaptor is ran
during generation it means no features are being injected.
As the number of inversion and generation steps decrease,

GENERATION

INVERSION
source text 𝑡𝑒𝑥𝑡!

source image 𝐼!

“a toy of a jeep”

source inverted
latent 𝑥"!

𝜖! 𝜙

𝑥#𝑥$ 𝑥#%&

empty text 𝑡𝑒𝑥𝑡'('

“”

target text 𝑡𝑒𝑥𝑡"

“a cartoon of a jeep”

𝑥# 𝑥#%&

𝑥# 𝑥#%&𝑥$

feature / self-attention
injection

cached latent injection

target image 𝐼"

Figure 8. Overview of the actual diffusers implementation of Plug-and-Play, which contrary to what the paper describes caches latent
during inversion, not intermediate features during generation. The features to be injected are re-computed from the cached latents on-the-
fly during DDIM generation sampling. The red arrows indicate injection, the floppy disk icon indicate that only the latent gets cached /
saved to disk. Inversion and generation are ran separately, all operations within each are ran in-memory.

the effect of skipping injection are more and more visible, in
particular structural guidance degrades. One could look into
caching and injecting adaptor features to avoid losing struc-
tural guidance. Note however that this would have no effect
on complexity, and might only affect PnP + Clockworkper-
formance in terms of CLIP and DINO scores at lower num-
ber of steps. Since optimizing PnP’s performance at very
low steps was not a focus of the paper, we did not pursue
this thread of work.

Possible optimizations. The careful reader might under-
stand that there are low hanging fruits in terms of both la-
tency and FLOP optimizations for PnP. First, if memory
would allow, one could cache the actual activations instead
of the latent during inversion, which would allow not re-
running the latent through the UNet at generation time. Sec-
ond, it would be simple to modify the generation loop code
not to stack the cached latent when t does not fall within the
injection schedule. If implemented, a substantial amount
of FLOP and latency could be saved on the generation, as

the default PnP hyper parameters τf and τA lead to injec-
tion in only the first 80% of the sampling trajectory. Note
however that both of these optimizations are orthogonal to
Clockwork, and would benefit both the baseline and Clock-
workimplementations of PnP, which is why we did not im-
plement them.

D.2. Additional Quantitative Results

We provide additional quantitative results for PnP and its
Clockworkvariants. In particular, we provide CLIP and
DINO scores at different clocks and with a learned ResNet
adaptor. In addition to the ImageNet-R-TI2I real dataset
results, we report scores on ImageNet-R-TI2I fake [2].
In the Fig. 9, we can see how larger clock size of 4 enables
bigger FLOP savings compared to 2, yet degrade perfor-
mance at very low number of steps, where both CLIP and
DINO scores underperform at 10 inversion and generation
steps. It is interesting to see that the learned ResNet adap-
tor does not outperform nor match the baseline, which is
line with our ablation study which shows that Clockwork-

0.24

0.25

0.26

0.27

0.28

Im
ag

eN
et

-R
-T

I2
I r

ea
l

Text-Image Similarity CLIP []

0.020

0.025

0.030

0.035

0.040

0.045

0.050
Structure Distance DINO []

PnP Baseline
PnP with Clockwork (identity clock of 2)
PnP with Clockwork (identity clock of 4)
PnP with Clockwork (learned clock of 2)

0 200 400 600 800
TFLOPs

0.24

0.25

0.26

0.27

0.28

Im
ag

eN
et

-R
-T

I2
I f

ak
e

0 200 400 600 800
TFLOPs

0.020

0.025

0.030

0.035

0.040

0.045

0.050

Figure 9. Additional quantitative results on ImageNet-R-TI2I real (top) and fake (bottom) for varying number of DDIM inversion steps:
[10, 20, 25, 50, 100, 200, 500, 1000]. We use 50 generation steps except for inversion steps below 50 where we use the same number for
inversion and generation.

works best for all schedulers but DDIM at very low number
of steps, see Tab. 1.
We can see that results transfer well across datasets, where
absolute numbers change when going from ImageNet-R-
TI2I real (top row) to fake (bottom row) but the relative
difference between methods stay the same.

D.3. Additional Qualitative Results

We provide additional qualitative examples for PnP for
ImageNet-R-TI2I real in Fig. 10 and Fig. 11. We show ex-
amples at 50 DDIM inversion and generation steps.

E. Additional examples

We provide additional example generations in this section.
Examples for SD UNet are given in Fig. 12, examples for
Efficient UNet in Fig. 13, and those for the distilled Effi-
cient UNet in Fig. 14. In each case the top panel shows the
reference without Clockwork and the bottom panel shows
generations with Clockwork. Fig. 12 includes the same ex-

amples already shown in the main body so that the layout is
the same as for the other models for easier comparison.
We also include additional generations in Fig. 15 for
Clockwork that operates at 16×16 feature resolution. The
generations with Clockwork are relatively not as impres-
sive as Clockwork at 32×32 resolution. We speculate that
due to higher dimensional feature representation, we may
need an adaptor with higher capacity.
The prompts that were used for the generations are the fol-
lowing (left to right, top to bottom), all taken from the MS-
COCO 2017 validation set:
• “a large white bear standing near a rock.”
• “a kitten laying over a keyboard on a laptop.”
• “the vegetables are cooking in the skillet on the stove.”
• “a bright kitchen with tulips on the table and plants by the

window ”
• “cars waiting at a red traffic light with a dome shaped

building in the distance.”
• “a big, open room with large windows and wooden

floors.”

Re
fe

re
nc

e

a tattoo of a lion a graffiti of a jeep an embroidery of a bear a sculpture of a castle an image of a violin

Ba
se

lin
e

W
ith

 C
lo

ck
wo

rk
Re

fe
re

nc
e

a sketch of a pizza an embroidery of a bustard a graphic of a eel an origami of a tiger a tattoo of a penguin

Ba
se

lin
e

W
ith

 C
lo

ck
wo

rk

Figure 10. Examples from ImageNet-R-TI2I real from Plug-and-Play [2] and its Clockworkvariant. We use 50 DDIM inversion and
generation steps, and a clock of 2. Images synthesized with Clockworkare generated 34% faster than the baseline, while being perceptually
close if at all distinguishable from baseline.

Re
fe

re
nc

e

a sketch of a jeep a painting of a tiger a painting of a penguin an art of a castle an image of a bobcat

Ba
se

lin
e

W
ith

 C
lo

ck
wo

rk
Re

fe
re

nc
e

a photo of a cat an embroidery of a hummingbird a tattoo of a violin an embroidery of a goldfish an art of a baloon

Ba
se

lin
e

W
ith

 C
lo

ck
wo

rk

Figure 11. Examples from ImageNet-R-TI2I fake from Plug-and-Play [2] and its Clockworkvariant. We use 50 DDIM inversion and
generation steps, and a clock of 2. Images synthesized with Clockworkare generated 34% faster than the baseline, while being perceptually
close if at all distinguishable from baseline.

• “a grey cat standing in a window with grey lining.”
• “red clouds as sun sets over the ocean”
• “a picnic table with pizza on two trays ”
• “a couple of sandwich slices with lettuce sitting next to

condiments.”
• “a piece of pizza sits next to beer in a bottle and glass. ”
• “the bust of a man’s head is next to a vase of flowers.”
• “a view of a bathroom that needs to be fixed up.”
• “a picture of some type of park with benches and no peo-

ple around.”
• “two containers containing quiche, a salad, apples and a

banana on the side.”

References
[1] Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yux-

iong He. Deepspeed: System optimizations enable training
deep learning models with over 100 billion parameters. Pro-
ceedings of the 26th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, 2020. 5

[2] Narek Tumanyan, Michal Geyer, Shai Bagon, and Tali Dekel.
Plug-and-play diffusion features for text-driven image-to-
image translation. In CVPR, 2023. 4, 7, 9, 10

Figure 12. Additional example generations for SD UNet without (top) and with (bottom) Clockwork. We include the examples shown in
the main body so that the layout of this figure matches that of Fig. 13 and Fig. 14.

Figure 13. Example generations for Efficient UNet without (top) and with (bottom) Clockwork.

Figure 14. Example generations for Distilled Efficient UNet without (top) and with (bottom) Clockwork.

Figure 15. Additional example generations for Efficient Unet without (top) and with (bottom) Clockworkthat is trained for 16× 16 feature
representation.

	. Clockwork details
	. Ablations
	. Additional perturbation analyses
	. Text-Guided Image Editing
	. Implementation Details
	. Additional Quantitative Results
	. Additional Qualitative Results

	. Additional examples

