
ElasticDiffusion: Training-free Arbitrary Size Image Generation
through Global-Local Content Separation

Appendices
In this supplementary document, we extended the discussion on existing diffusion models generation processes, highlighting
their constraints in adapting to diverse image sizes and the potential for separating global and local content generation.
We also provide further qualitative comparisons with baselines using the DrawBench benchmark [4] at various resolutions
including full-HD. Our code can be accessed at https://github.com/MoayedHajiAli/ElasticDiffusion-official.git

1. ElasticDiffusion Symbols and Implementation.
To simplify the notation in this paper, we have employed specific symbols to denote the key elements within our framework.
To clarify the associations between each symbol and their meanings, we provide in Tab. 1, a detailed explanation of each
symbol that we used in the paper. Additionally, we describe in Algorithm 1 the full generation process of an image or
arbitrary size H̄ × W̄ using a pre-trained base diffusion models that operates on images of size H ×W

Table 1. Table of symbols used in this paper.

Symbol Correspondence

H ×W training resolution of the base diffusion model
H̄ × W̄ target resolution of the generated image
N ×M chosen resolution of the same aspect ratio as H̄ × W̄ but smaller than H ×W

ϵθ pre-trained diffusion model network
w classifier-free guidance weight
xt diffusion latent at timestep t of size H ×W
x̄t diffusion latent at timestep t of size H̄ × W̄
xt downsampled latent from x̄t

x̂t padded xt to match the training resolution H ×W
x̂t
0 a noise-free sample of x

x̂t
0 a noise-free sample of x

pk a crop of x̄t smaller than the training resolution
ck a context crop of x̄t

Su unconditional score for latent at size H ×W
Sc conditional score for latent at size H ×W
Sd class-direction score for latent at size H ×W
S̄u unconditional score for latent at size H̄ × W̄
S̄d class-direction score for latent at size H̄ × W̄

2. Discussion on Diffusion Models
In this section, we discuss the generation process of diffusion models, focusing on their performance across various image
sizes and our analysis of their capacity to separate global and local content generation.

2.1. Diffusion Models Adaptability Across Sizes

Pretrained diffusion models such as StableDiffusion1.4 are technically capable of handling various image sizes. Accordingly,
the official implementation provides parameters for adjusting the size of the generated images. However, our experiments
show a significant decline in image quality when these models operate at resolutions outside those seen during training. These
observations are confirmed in the Stable Diffusion blog post on Hugging Face which warns that deviating from the trained
resolution may compromise image quality [5]. Specifically, it notes that going below the training resolution results in lower
quality images, while exceeding it in both the height and width directions causes repetitive image areas, leading to a loss of
global coherence. Similar findings were noted in the StableDiffusion-XL official blog post [2].

https://github.com/MoayedHajiAli/ElasticDiffusion-official.git


Algorithm 1 Sampling Algorithm for Image at H̄ × W̄

Require:
ϵθ ▷ pre-trained DM at H ×W
c,w ▷ text condition and CFG weight
x̄T ∼ N (0, I) ▷ noise at H̄ × W̄

1: for t = T down to 1 do
2: xt ← Downsample(x̄t, N ×M)
3: Zt ∼ N (0, I)
4: At ← YH−N,W−M ,Y ∼ Uniform(0, 255)
5: x̂t ← Pad

(
xt,At

√
ᾱt +

√
1− ᾱt · Zt

)
▷ Pad to match training resolution H ×W

6: Sc ← Crop (ϵθ (x̂t, c) , N ×M) ▷ conditional score at target aspect ratio
7: Su ← ϵ̃θ(x̂t) ▷ Uncodnitional score from Eq. (3)
8: S̄0

d ← Upsample(Sc − Ŝu, H̄ × W̄ ) ▷ class-direction score
9: for all r = 1, . . . , R do

10: S̄r
d ← Resample(S̄r−1

d , x̄t) ▷ Eq. (6)
11: end for
12: S̄u ⇐ ϵ̃θ(x̄t) ▷ Eq. (3)
13: x̄t−1 ← S̄u + (1 + w) · S̄R

d ▷ diffusion update
14: x̄t−1 ← x̄t−1 − RRG(x̄t,xt) ▷ Eq. (7)
15: end for
16: return x̄0

In Fig. 1, we qualitatively analyze how generating images larger than the training resolution impacts image coherence.
We generate these results using StableDiffusion1.4 which was pretrained on 512 × 512 images. For smaller dimensions, the
model tends to stretch the generated objects, whereas for larger dimensions, such as 1024 × 1024, it often creates repetitive
elements. Notice the stretch in the cat and lion faces in the third and fourth columns. Additionally, observe how artifacts and
repetition regarding nose and eye parts tend to happen more frequently as we increase the resolution.

Notably, the model maintains its output quality within a narrow margin of 64 pixels from its training resolution, suggesting
a limit to the generalization capabilities of diffusion models with respect to various image sizes. This observation also shows
the potential limitations of the solutions based only on a fine-tuning process for a fixed set of aspect ratios such as those
proposed in prior work [6, 10].

2.2. Global and Local Content Generation

In the domain of generative adversarial networks (GANs), the disentanglement style and content in the synthesized images
has been widely explored, paving the way for advancements in diverse generation and editing applications [1, 3, 8]. However,
the precise definitions of ’style’ and ’content’ remain fluid, with no consensus on the definition in the literature. Previous
works often define the content and style based on manually pre-defined attributes. In this work, we opt to avoid such
ambiguity by denoting the overall composition of the image as global content and the fine-grained details as local content.
Subsequently, we conceive ElasticDiffusion based on two key insights: First, the class direction score (Eq. (2) in the main
paper) collectively influences pixels to shape the overall composition of the generated image, denoted as global content. This
global score can be effectively shared among neighboring pixels. Fig. 2 demonstrates that sharing the class direction score
between nearby pixels maintains the global content and coherence of the generated image, although increasing the sharing
extent decreases the perceptual quality. In contrast, the unconditional score requires pixel-level precision and it may not be
feasible to share it between nearby pixels, as illustrated in Fig. 3. Second, the unconditional score dictates the fine-grained
details of the generated image, denoted as local content. This suggests that the score can be computed effectively on localized
regions without necessitating global information from the entire image. Fig. 4 shows that computing the unconditional score
in localized regions, corresponding to the size 512 × 512 of the generated image, produces similar results to those obtained
when computing the score globally.



3. Analysis of ElasticDiffusion
This section provides a comprehensive analysis of ElasticDiffusion, focusing on its application to pixel-based diffusion
models and comparisons with baseline methods. We present further qualitative results to showcase ElasticDiffusion’s effec-
tiveness in enhancing the coherence of the generated image across various sizes. We finally discuss the limitations and failure
cases of our method.

3.1. Additional Ablation Study.

To better understand the effect of the class-direction refinement and reduced-resolution guidance (RRG) strategy on the
overall quality of the results, we analysed in Tab. 2 the performance of ElasticDiffusion when excluding these components at
two different resolutions. We observe that their necessity is pronounced at higher resolutions (e.g., 4x), while their influence
is limited at lower upsampling scale (e.g., 2x). Notably, even without these components, our method achieves better FID than
baselines.

768× 768 1024× 1024

FID ↓ CLIP ↑ FID ↓ CLIP ↑
Ours 225.86 26.66 228.87 23.74
w/o RRG 230.27 24.13 234.66 23.15
w/o RGG & refined class-direction score 233.49 23.32 263.15 20.91

Table 2. Ablation study on CelebAHQ Dataset using StableDiffison1.4 as the base model.

3.2. Generalization to Pixel-Based Diffusion Models

We apply ElasticDiffusion to a pre-trained DeepFloyd-IF-XL-V1.0 model, which operates on the pixel-space [9]. In the first
stage, DeepFloyd-XL-V1.0 generates images at a 64× 64 resolution, which are then upscaled to 256× 256 and subsequently
to 1024× 1024 in later stages. To assess the generalization capabilities of our method, we only focus on the first stage which
generates images at a low resolution. As illustrated in Fig. 5, DeepFloyd-XL-V1.0 shows similar limitations as latent diffusion
models when dealing with various resolutions, primarily characterized by repetitive elements and reduced image coherence.
However, we demonstrate the effectiveness of ElasticDiffusion in enhancing the ability of the pre-trained model to handle
diverse resolutions and aspect ratios by successfully generating well-structured images. This shows the applicability of our
proposed generation process to diffusion models that operate on the pixel space.

3.3. Additional Qualitative Results

We provide further qualitative analysis of ElasticDiffusion.
Figure 6 provides a comparison with StableDiffusion and MultiDiffusion using selected DrawBench [7] prompts for hori-

zontal images at resolution 680 × 512. We highlight the tendency of baseline methods to generate repetitive elements. This
not only disrupts the image’s overall coherence but also makes the baselines struggle to accurately reflect object counts. For
example, in the first row, both baselines produced multiple dogs for an input prompt ’one dog on the street’. In contrast, our
method effectively aligns with the given prompt, generating a single, coherent dog.

Figure 7 shows a similar analysis on vertical images of resolution 512× 680. We observe a similar limitation in baselines
such as element and texture repetition in the generated images. This tendency of repeating elements particularly affects
the model’s capacity to create coherent objects that share textures with the background. For example, In the first row, the
baselines struggle to accurately depict a hamburger, whereas our method successfully generates a coherent hamburger that
is separated from the background. This limitation also affects the baseline models’ ability to render objects with repeating
patterns, like a ’cube made of bricks’ shown in the last row. Moreover, the baseline behavior of repeating patterns especially
escalates when generating a single object across the majority of the image, as observed in the 4th and 5th rows. In contrast,
our method is able to maintain image coherence across various settings.

Figures 8 and 9 focus on showing results for the generation of Full-HD horizontal images using StableDiffusion-XL as the
base model. We compare against the standard decoding process of StableDiffusion-XL on sampled DrawBench prompts from
the Reddit Category and observe a significant improvement in image coherence when applying our method. Notice in Fig. 8
how StableDiffusion-XL stretch the car in the first example, or repeat the limbs of the corgi and the lion (in the 2nd and 3rd

example). In comparison, our method successfully coherently generates the requested image without any such distortions,
all while utilizing lower memory requirements.



Figure 1. Degradation of image quality in StableDiffusion1.4 with varying resolutions. We illustrate the progressive decrease in image
quality as the resolution deviates from the model’s training size of 512 × 512. The results on square, horizontal, and vertical resolutions
show a significant reduction in global coherence for image sizes beyond 64 pixels from the training resolution.

Figures 10 and 11 provide a similar analysis for Full-HD vertical images. StableDiffusion-XL produces significantly
distorted images which either contain incorrectly repeating elements as seen in the cat and the man faces in the first two
examples of Fig. 10, or stretched parts like the woman face in the first example of Fig. 11. In contrast, our method generates
detailed objects that fit the vertical aspect ratio while avoiding any stretching or element repetition.

3.4. Limitations

Fig. 12 illustrates the limitations of ElasticDiffusion in various scenarios. Our method retains some limitations of the pre-
trained base model, including challenges with text-image alignment for complex prompts and occasional occurrence of arti-
facts. Additionally, we observe an increase in image blurriness with the application of larger Reduced-Resolution Guidance
weights (Sec. 4.4 of the main paper). Moreover, while infrequent, there are instances where the constant-color background
inadvertently blends into the generated image (as discussed in Sec. 4.2 of the main paper).
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Figure 2. Effect of sharing class direction score between nearby pixels. We highlight that sharing the score within a group of neighboring
pixels preserves the global content and coherence of the image, despite a reduction in the perceptual quality when selecting larger group
sizes (as denoted by the red square). This supports our assumption that this score tends to be similar among neighboring pixels. To conduct
this experiment, we downsample the class direction score of size 64× 64 by a factor N ×M (as specified in the last row) and upsample it
back to 64× 64, thus sharing the score for each N ×M region. Note that as our experiments utilize a latent diffusion model, sharing the
score within an N ×M latent pixels during the decoding process impacts 8N × 8M pixels of the final generated image.

Figure 3. Effect of sharing unconditional score between nearby pixels. We show that sharing the unconditional score, even in small
groups of pixels, leads to the generation of complete noise. This indicates that uncondtional score, in contrast to the class direction score,
requires pixel-level precision to generate local details.
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Figure 4. Unconditional score computation on localized regions. We show that computing the diffusion model unconditional score on
local patches (corresponding to the size of the red boxes in the second row) results in images that are visually similar to those produced by
a global score computation (displayed in the first row).
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96 x 96: A teddy bear 128 x 128: A cat 64 x 128: A person128 x 64: A person

Ours DeepFloyd-XL Ours DeepFloyd-XL Ours DeepFloyd-XL

Figure 5. DeepFloyd-XL across various image sizes. We test DeepFloyd-XL, a diffusion model that operates on the pixel space, across
multiple image resolutions. We observe a degradation in performance similar to that seen in StableDiffusion. The application of
ElasticDiffusion significantly improves the overall composition of the generated images.
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Figure 6. Additional qualitative comparison on horizontal images using selected DrawBench prompts. We use SD1.4 as a base model
for our method, StableDiffusion, and MultiDiffusion and generate images at resolution 680 × 512. Images produced by baselines display
reduced alignment to the input prompt (1st and 3rd rows) and repeated elements (4th and 6th rows). In comparison, our method displays
superior image coherence and faithfulness to the input prompts.
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Figure 7. Additional qualitative comparison on vertical images using selected DrawBench prompts. We use SD1.4 base model for
our method, StableDiffusion, and MultiDiffusion and generate at the resolution 512 × 680. Similar to the horizontal resolutions, baseline
methods exhibit several limitations such as poor text-image alignment (1st and 2nd rows), repeated elements (3rd, 4th and 5th rows), and
generated artifacts (6th and 7th rows). In comparison, our method consistently maintains better image coherence and fidelity to the input
prompts.



Figure 8. Additional qualitative comparison with SDXL on Full-HD horizontal images. We use randomly sampled DrawBench
prompts from the Reddit Category. Despite its fine-tuning process, StabelDiffusion-XL produces images with repetitive textures and
elements in full-HD resolution. Our method achieves a more cohesive composition while maintaining a comparable level of details, all
while requiring less memory.



Figure 9. Additional qualitative comparison with SDXL on Full-HD horizontal images. We use randomly sampled DrawBench
prompts from the Reddit Category. StabelDiffusion-XL produce images that tend to repeat body parts and texture in full-HD resolution. In
comparison, our method achieves better image coherence and maintains a similar perceptual quality, all while requiring less memory.



Figure 10. Additional qualitative comparison with SDXL on Full-HD vertical images. We use randomly sampled DrawBench prompts
from the Reddit Category. Similar to horizontal resolutions, StabelDiffusion-XL produce repeated elements in full-HD resolution. In
comparison, our method achieves more coherent images and generates content that fits the frame aspect ratio.



Figure 11. Additional qualitative comparison with SDXL on Full-HD vertical images. We use randomly sampled DrawBench prompts
from the Reddit Category. Similar to horizontal resolutions, StabelDiffusion-XL produce repeated elements that significantly affect the
image coherence. In comparison, our method achieves superior composition while maintaining a similar level of detail.



Figure 12. Limitations of ElasticDiffusion. (A) poor text-image alignment for complex prompts, inherited from the base diffusion model,
(B) increased blur in outputs with higher RRG weight, (C) emerging artifacts in complex images, and (D) rare background bleed-through
where the color-constant background is unintentionally included in the generated image.
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