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Supplementary Material

Section 7.1 provides more information on the biological
motivation of our project. Section 7.2 shows per nest re-
sults of our method. In Sec. 7.3, we report the number of
proposals and training run time. Section 7.4 gives more de-
tails about data acquisition, filtering, and split. Addition-
ally, Sec. 7.5 provides several sensitivity studies. Lastly,
Sec. 7.6 shows results for a naive baseline for the random
classifier.

7.1. Biological Motivation and Impact

“Displays” are stereotyped sequences of movements that
are key to communication between animals of the same
species. In penguins, these behaviors are widespread and
are used for a variety of purposes including mate choice and
pair bonding. These displays are accompanied by vocaliza-
tions that are known to be individually distinctive and to
allow both mate and chick recognition in most species [1].

In this paper, we choose to study the ecstatic display
(ED), one of the most common and recognizable displays in
Pygoscelid penguins. During the ecstatic display penguins
stand fully erect on their nests with their stretched neck and
bill pointing up vertically. They move their outstretched
flippers back and forth in fast beats while they emit very
loud rasps that make their chest vibrate synchronously [1,2].
These rasps are normally emitted in pairs of syllables made
up of a short inhale followed by a long and loud exhale [3].
Here we study this behavior in Chinstrap penguins (Py-
goscelis antarctica) for which there is an almost complete
lack of information regarding their displays [2].

Studies in the two closest species (Pygoscelis adeliae
and Pygoscelis papua) suggest the ecstatic display could
be an “honest display” intended for males to communicate
body conditions to females and/or defend the nesting area
from nearby males without a fight [4, 5]. This hypothe-
sis arises because, in those two species, ED occurs only in
males at the beginning of the season [2], when they claim
a nest and compete to attract a partner. In chinstrap pen-
guins, however, this behavior happens throughout the sea-
son and is displayed by both sexes (as we see through our
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Figure 1. Visualization showing the relation between bounding
box size and mAP.

event camera recordings). We understand that this behav-
ior could serve a different communication purpose in this
species and we want to explore whether it indeed mediates
similarly important functions for pair formation and colony
structuring as in the other two species. To find out, first,
we must understand when, how, and how long this behav-
ior occurs before drawing relationships to other factors like
sex, breeding stage, at-sea behavior, or environmental fac-
tors. Behavioral monitoring like this is proving increasingly
important to anticipate changes in breeding habits before a
population decline occurs [6]. With this work, we aim to
open the door for other researchers to use event cameras
and TAD for “large-scale” automatic detection of behaviors
in preventive monitoring.

7.2. Results per nest

The best results of our method per penguin nest are shown
in Tab. 1 and visualized in Fig. 1. While it is difficult to
extract trends from different nests, the results show a large
variation in the data. It furthermore hints at the importance
of good camera positioning during data acquisition. An el-
evated camera position, which allows clear separation of
the nests, aids in the accurate positioning of the bounding
boxes. This is a lesson learned for future data acquisition
campaigns. We expect to be able to improve the usability of
the proposed method by using more cameras and recording



mAP@IoU NO1 NO2 NO3 NO04 NO5 NO6 NO7 NO8 NO9 NIO NIl NI2 NI3 N14 NI5 NI16
0.1 0.53 045 066 1.00 0.67 0.67 08 076 0.76 098 0.72 086 0.55 0.72 0.67 0.69
0.3 0.40 0.45 066 1.00 0.67 067 085 0.69 073 098 072 086 055 0.72 0.65 0.67
0.5 0.30 0.33 0.62 1.00 067 044 058 0.69 073 098 071 079 055 0.72 0.53 0.59
0.7 0.27 0.03 025 067 067 044 035 047 066 090 043 059 055 0.72 038 0.40
Average 0.37 032 055 092 067 056 0.66 0.65 0.72 096 065 078 055 0.72 0.55 0.59
#ED 8.00 6.00 11.00 3.00 9.00 3.00 4.00 8.00 11.00 6.00 15.00 13.00 7.00 6.00 21.00 10.00

Table 1. Results per nest, which show the variation with respect to the data.

Proposal Method  # proposals AR, Top 50
Sliding Window 12820320 0.08
Watershed 352 0.27
event TAG [7] 13117 0.49
reTAG (Ours) 30527 0.66

Table 2. Number of generated proposals for the test set and the
average recall (AR) for different methods.

fewer nests per camera.

7.3. Runtime, Computational Effort

The number of generated proposals for the test set per
method is reported in Tab. 2. We can see the advantage
of the TAG-based methods compared to the sliding window
approach regarding the number of proposals. The water-
shed algorithm is too simple and does not produce a suffi-
cient amount of proposals. Comparing the two TAG-based
algorithms shows the trade-off between recall and compu-
tational effort. While our reTAG has significantly increased
recall, it also generated five times more proposals. Overall,
our reTAG is lightweight compared to the sliding window
approach and has 8 x higher average recall.

Inference time: The ATSN with a ResNet18 backbone
has a run time of 2.56ms (Nvidia Tesla V100S) for one ex-
ample and one forward pass. Each time interval generated
in the first step (proposal) is a sample for training and vali-
dation of the second step (classifier).

Training time: For the training set the reTAG algorithm
outputs 189519 proposals. To maintain a manageable bal-
ance between foreground (ED) and background, the nega-
tive samples in the training set are sub-sampled by a factor
of 10, leading to a training set with 2093 positive and 18859
negative samples. We train for 10 epochs, resulting in a
training time for the classifier of approximately 30 minutes
on an Nvidia Tesla V100S GPU.

7.4. Dataset Details

In total, we collected around 238 hours of unfiltered data
from the Vapour Col penguin colony in Deception Island,

in the form of ROSBag files. The ROSBag files were then
post-processed using a hot pixel filter [8], which discards
data from faulty pixels that trigger events at a high rate.
Among the recorded data, we selected 24 ten-minute-long
sequences for annotation of ecstatic display (ED) behavior.
The selected sequences include diverse scenarios from dif-
ferent dates and hours of the day, to account for various
illumination and weather conditions.

Incidentally, our setup was deployed next to a foraging
camera which takes a snapshot of the penguin colony every
1 minute. During the night, the foraging camera uses flashes
of infrared (IR) light to acquire images in low light. Since
the event camera sensor is also sensitive to IR light, the
aforementioned flashes produce a flurry of events through-
out the scene once per minute. Consequently, events gener-
ated by IR flashes were filtered out from the night sequences
before applying our proposed TAD algorithm.

Detailed information on every ten-minute sequence in
the annotated dataset can be found in Tab. 3. The table fur-
thermore indicates the data split (training, validation, test-
ing) we used in all experiments. The test split reflects the
proportion of precipitation in Antarctica during the breed-
ing season.

7.5. Additional Sensitivity Studies

Table 4 reports the results using a MobileNetV3 backbone
instead of ResNetl8. The figures are similar with both
backbone variants and event representations (only a 4% per-
formance drop on average), supporting the robustness of our
method to different design choices.

Similarly, Tab. 5 shows results concerning different val-
ues of the accumulation time At for histograms and decay
7 for time maps.

7.6. Naive Baseline Classifier

There is a high class imbalance in the proposals. Randomly
guessing leads to a high number of false positives, and con-
sequently a low precision. To confirm this, we implemented
arandom classifier (akin to flipping a coin), which accepts a
proposal with a 50% change, setting the score to 1 for mAP
calculation. This solution achieves 0.035% mAP (Avg.).



Day time split night precipitation #ED

Jan 5th  17:00 train X X 2
Jan 6th  19:00 train X X 11
Jan 7th  05:00 train X v 70
Jan 7th  08:00 train X X 3
Jan 9th  20:04 train X X 28
Jan 11th 21:06 train X X 9
Jan 12th 03:36 train v v 54
Jan 12th 03:56 train X v 23
Jan 12th 08:56 train X v 0
Jan 12th 12:56 train X X 0
Jan 12th 17:26 train X X 58
Jan 13th 00:00 train v X 92
Jan 13th 10:59 train X X 3
Jan 13th 14:59 train X v 11
Jan 14th 23:58 train v X 1
Jan 15th 13:58 train X X 0
Jan 18th 02:56 train v X 0
Jan 7th  02:00 validation v X 20
Jan 17th 15:56 validation X X 29
Jan 6th  01:00 test v X 53
Jan 13th 09:59 test X X 47
Jan 14th 21:58 test X X 8
Jan 15th 05:58 test X X 18
Jan 15th 11:48 test X v 25

Table 3. An overview of all ten-minute sequences in the annotated
dataset.

Backbone Eventrepres. 0.1 0.3 0.5 0.7  Average

ResNet18 (Tab. 3)  Time-map 0.66 0.64 0.58 043 0.58
MobileNetV3-Large Time-map 062 0.59 053 036 0.53
MobileNetV3-Large Histogram 0.57 054 049 036 0.49
MobileNetV3-Small Time-map 0.60 056 050 035 050
MobileNetV3-Small Histogram 0.50 048 045 032 0.44

Table 4. Sensitivity of the system with respect to the backbone
(ResNet or MobileNet) and input represesntation. Mean Average
Precision at several IoU levels (mAP@IoU).

Histogram At Time map: Decay 7 [s]

At[s] 03 1 3 r[s] 002 02 2
mAP 055 056 052 mAP 045 058 051

Table 5. Sensitivity of the system concerning parameters of the
frame representation. Mean average precision at several loU levels
(mAP@]IoU).
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