
A. Theory Behind Generalized Exponentials
A.1. Generalized Exponential Function

The Generalized Exponential Function (GEF) is similar
to the probability density function (PDF) of the Generalized
Normal Distribution (GND) [14] with an additional ampli-
tude parameter A ∈ R. This function allows for a more
flexible adaptation to various data shapes by adjusting the
shape parameter β ∈ (0,∞). The GEF is given by the fol-
lowing.

f(x|µ, α, β,A) = A exp

(
−
(
|x− µ|

α

)β
)

(10)

where µ ∈ R is the location parameter, α ∈ R is the scale
parameter, A defines the amplitude, and β > 0 is the shape
parameter. For β = 2, the GEF becomes a scaled Gaussian
distribution:

f(x|µ, α, β = 2, A) =
A

α
√
2π

exp

(
−1

2

(
x− µ

α/
√
2

)2
)
(11)

And for β = 1, Eq. 10 reduces to a scaled Laplace distribu-
tion:

f(x|µ, α, β = 1, A) =
A

2α
exp

(
−|x− µ|

α

)
(12)

The GEF, therefore, provides a versatile framework for
modeling a wide range of data by varying β, unlike the
Gaussian mixtures, which have a low-pass frequency do-
main. Many common signals, like the square or triangle,
are band-unlimited, constituting a fundamental challenge to
Gaussian-based methods (see Fig.12). In this paper, we try
to learn a positive β for every component of the Gaussian
splatting to allow for a generalized 3D representation.

A.2. Theoretical Results

Despite its generalizable capabilities, the GEF has no
fixed behavior in terms of frequency domain. The error
functions of the GEF and its Fourier domain cannot be stud-
ied analytically, as they involve complex integrals of expo-
nentials without closed form that depend on the shape pa-
rameter β. For example, the Fourier of GEF is given by

F(f)(ξ) =

∫ ∞

−∞
A exp

(
−
(
|x− µ|

α

)β
)
e−2πixξ dx

which does not have a closed-form solution for a general
β. We demonstrate that for specific cases, such as for a
square signal, the GEF can achieve a smaller approximation
error than the corresponding Gaussian function by properly
choosing β. Theorem 1 provides a theoretical foundation
for preferring the GEF over standard Gaussian functions in
our GES representation instead of 3D Gaussian Splatting
[27].

Theorem 1 (Superiority of GEF Approximation Over
Gaussian for Square Wave Signals). Let S(t) represent a
square wave signal with amplitude A > 0 and width L > 0
centered at t = 0. Define two functions: a scaled Gaus-

sian G(t;α,A) = Ae−
t2

α2 , and a Generalized Exponential
Function GEF (t;α, β,A) = Ae−(|t|/α)β . For any given
scale parameter α, there exists a shape parameter β such
that the approximation error Ef =

∫∞
−∞ |S(t) − f(t)|dt.

of the square signal S(t) using GEF is strictly smaller than
that using the Gaussian G.

Proof. The error metric Ef for the square signal S(t) ap-
proximation using f function as Ef =

∫∞
−∞ |S(t)−f(t)|dt.

Utilizing symmetry and definition of S(t), and the fact that
S(t) > G(t;α,A), the error for the Gaussian approxima-
tion simplifies to:

EG = 2

∫ L/2

0

A(1− e−
t2

α2)dt+ 2

∫ ∞

L/2

Ae−
t2

α2 dt.

For the GEF approximation, the error is:

EGEF = 2

∫ L/2

0

A(1−e−(t/α)β)dt+2

∫ ∞

L/2

Ae−(t/α)βdt.

The goal is to show the difference in errors ∆E = EG −
EGEF to be strictly positive, by picking β appropriately.
The error difference can be described as follows.

∆E = ∆Emiddle +∆Etail

∆Emiddle = 2

∫ L/2

0

A(1−e−
t2

α2)dt − 2

∫ L/2

0

A(1−e−(t/α)β)dt

∆Etail = 2

∫ ∞

L/2

Ae−
t2

α2 dt− 2

∫ ∞

L/2

Ae−(t/α)βdt

Let us Define err(t) as the difference between the exponen-
tial terms:

err(t) = e−
t2

α2 − e−(t/α)β .

The difference in the middle error terms for the Gaussian
and GEF approximations, ∆Emiddle, can be expressed us-
ing err(t) as:

∆Emiddle = 2A

∫ L/2

0

err(t) dt.

Using the trapezoidal approximation of the integral, this
simplifies to:

∆Emiddle ≈ LA err(L/2) = LA
(
e−

L2

4α2 − e−(L/2α)β
)
.

Based on the fact that the negative exponential is mono-
tonically decreasing and to ensure ∆Emiddle is always pos-
itive, we choose β based on the relationship between L/2
and α :

14

• If L
2 > α (i.e., L

2α > 1), choosing β > 2 ensures

e−(L/2α)β < e−
L2

4α2 .

• If L
2 < α (i.e., L

2α < 1), choosing 0 < β < 2 results

in e−(L/2α)β < e−
L2

4α2 .

Thus, ∆Emiddle can always be made positive by choosing
β appropriately, implying that the error in the GEF approx-
imation in the interval [−L/2, L/2] is always less than that
of the Gaussian approximation. Similarly, the difference of
tail errors ∆Etail can be made positive by an appropriate
choice of β, concluding that the total error EGEF is strictly
less than EG. This concludes the proof.

A.3. Numerical Simulation of Gradient-Based 1D
Mixtures

Objective. The primary objective of this numerical simula-
tion is to evaluate the effectiveness of the generalized expo-
nential model in representing various one-dimensional (1D)
signal types. This evaluation was conducted by fitting the
model to synthetic signals generated to embody character-
istics of square, triangle, parabolic, half sinusoidal, Gaus-
sian, and exponential functions, which can constitute a non-
exclusive list of basic topologies available in the real world.
Simulation Setup. The experimental framework was based
on a series of parametric models implemented in PyTorch,
designed to approximate 1D signals using mixtures of dif-
ferent functions such as Gaussian, Difference of Gaus-
sians (DoG), Laplacian of Gaussian (LoG), and a Gener-
alized mixture model. Each model comprised parameters
for means, variances (or scales), and weights, with the gen-
eralized model incorporating an additional parameter, β, to
control the exponentiation of the Gaussian function.
Models. Here, we describe the mixture models used to ap-
proximate the true signal forms.

• Gaussian Mixture Model (GMM): The GMM com-
bines several Gaussian functions, each defined by its
mean (µi), variance (σ2

i), and weight (wi). For a set of
N Gaussian functions, the mixture model g(x) can be
expressed as:

g(x) =

N∑
i=1

wi exp

(
− (x− µi)

2

2σ2
i + ϵ

)
, (13)

where ϵ is a small constant to avoid division by zero,
with ϵ = 1e− 8.

• Difference of Gaussians (DoG) Mixture Model: The
DoG mixture model is comprised of elements that rep-
resent the difference between two Gaussian functions
with a fixed variance ratio ν. The model d(x) for N

components is given by:

d(x) =

N∑
i=1

wiDi

Di =

(
exp

(
− (x− µi)

2

2σ2
i + ϵ

)
− exp

(
− (x− µi)

2

2(σ2
i /ν) + ϵ

))
,

(14)
where σi is a scale parameter, and the variance ratio ν
is fixed to be 4.

• Laplacian of Gaussian (LoG) Mixture Model: The
LoG mixture model is formed by a series of Laplacian
of Gaussian functions, each defined by a mean (µi),
scale (γi), and weight (wi). The mixture model l(x)
is:

l(x) =

N∑
i=1

wi

(
− (x− µi)

2

γ2
i

+ 1

)
exp

(
− (x− µi)

2

2γ2
i + ϵ

)
,

(15)

• Generalized Mixture Model: This model generalizes
the Gaussian mixture by introducing a shape parameter
β. Each component of the model h(x) is expressed as:

h(x) =

N∑
i=1

wi exp

(
−|x− µi|β

2σ2
i + ϵ

)
, (16)

where β is a learnable parameter that is optimized
alongside other parameters. When β = 2 is fixed, the
equation in Eq.(16) reduces to the one in Eq.(13).

Model Configuration. The models were configured with
a varying number of components N , with tests conducted
using N = {2, 5, 8, 10, 15, 20, 50, 100}. The weights of the
components could be either positive or unrestricted. For the
generalized model, the β parameter was learnable.
Training Procedure. Each model was trained using the
Adam optimizer with a mean squared error loss function.
The input x was a linearly spaced tensor representing the
domain of the synthetic signal, and the target y was the
value of the signal at each point in x. Training proceeded
for a predetermined number of epochs, and the loss was
recorded at the end of training.
Data Generation. Synthetic 1D signals were generated for
various signal types over a specified range, with a given data
size and signal width. The signals were used as the ground
truth for training the mixture models. The ground truth sig-
nals used in the experiment are one-dimensional (1D) func-
tions that serve as benchmarks for evaluating signal pro-
cessing algorithms. Each signal type is defined within a
specified width around the origin, and the value outside this
interval is zero (see Fig.12). The parameter width σ dic-
tates the effective span of the non-zero portion of the signal.
We define six distinct signal types as follows:

15

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Time

0

1

Am
pl

itu
de

Square Signal

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Frequency

0

1

M
ag

ni
tu

de

Fourier Transform of Square

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Time

0

1

Am
pl

itu
de

Triangle Signal

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Frequency

0

1

M
ag

ni
tu

de

Fourier Transform of Triangle

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Time

0

1

Am
pl

itu
de

Parabolic Signal

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Frequency

0

2000

M
ag

ni
tu

de

Fourier Transform of Parabolic

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Time

0

1

Am
pl

itu
de

Half_sinusoid Signal

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Frequency

100
0

100

M
ag

ni
tu

de

Fourier Transform of Half_sinusoid

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Time

0

1

Am
pl

itu
de

Exponential Signal

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Frequency

0

2

M
ag

ni
tu

de

Fourier Transform of Exponential

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Time

0

1

Am
pl

itu
de

Gaussian Signal

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
Frequency

0

1

M
ag

ni
tu

de
Fourier Transform of Gaussian

Figure 12. Commong Signals Used and Their Fourier Transforms. Note that the Gaussian function is low-pass bandwidth, while
common signals like the square and triangle with sharp edges have infinite bandwidth, making them challenging to be fitted with mixtures
that have low-pass frequency bandwidth (e.g. Gaussian mixtures, represented by Gaussian Splatting [27]).

1. Square Signal: The square signal is a binary function
where the value is 1 within the interval (−σ

2 ,
σ
2) and 0

elsewhere. Mathematically, it is represented as

fsquare(x) =

{
1 if − σ

2 < x < σ
2 ,

0 otherwise.
(17)

Its Fourier Transform is given by

FT{Square Wave}(f) = sinc
(
f · σ
π

)
(18)

2. Triangle Signal: This signal increases linearly from
the left edge of the interval to the center and decreases
symmetrically to the right edge, forming a triangular
shape. It is defined as

ftriangle(x) =

{
σ
2 − |x| if − σ

2 < x < σ
2 ,

0 otherwise.
(19)

Its Fourier Transform is

FT{Triangle Wave}(f) =
(

sinc
(
f · σ
2π

))2

(20)

3. Parabolic Signal: This signal forms a downward-
facing parabola within the interval, and its expression
is

fparabolic(x) =

{
(σ2)

2 − x2 if − σ
2 < x < σ

2 ,

0 otherwise.
(21)

The Fourier Transform of the parabolic signal is

FT{Parabolic Wave}(f) =
3 ·
(

sinc
(

f ·σ
2π

))2
π2 · f2

(22)

4. Half Sinusoid Signal: A half-cycle of a sine wave is
contained within the interval, starting and ending with
zero amplitude. Its formula is

fhalf sinusoid(x) =

{
sin
(
(x+ σ

2)
π
σ

)
if − σ

2 < x < σ
2 ,

0 otherwise.
(23)

Its Fourier Transform is described by

FT{Half Sinusoid}(f) =

{
σ
2 if f = 0
σ·sin(π·f ·σ)

π2·f2 otherwise
(24)

16

5. Exponential Signal: Exhibiting an exponential decay
centered at the origin, this signal is represented by

fexponential(x) =

{
exp(−|x|) if − σ

2 < x < σ
2 ,

0 otherwise.
(25)

The Fourier Transform for the exponential signal is

FT{Exponential}(f) = σ

f2 +
(
σ
2

)2 (26)

6. Gaussian Signal: Unlike the others, the Gaussian sig-
nal is not bounded within a specific interval but instead
extends over the entire range of x, with its amplitude
governed by a Gaussian distribution. It is given by

fGaussian(x) = exp

(
− x2

2σ2

)
. (27)

The Fourier Transform of the Gaussian signal is also a
Gaussian, which in the context of standard deviation σ
is represented as

FT{Gaussian}(f) =
√
2π ·σ ·exp

(
−2π2σ2f2

)
(28)

As shown in Fig.12, the Gaussian function has a low-
pass band, while signals like the square and triangle with
sharp edges have infinite bandwidth, making them challeng-
ing for mixtures that have low-pass frequency bandwidth
(e.g. Gaussian mixtures, represented by Gaussian Splatting
[27]).

Each signal is sampled at discrete points using a Py-
Torch tensor to facilitate computational manipulation and
analysis within the experiment’s framework. We show in
Fig.14,15,16,17,18,19,20,21,22,23,24, and 25 examples of
fitting all the mixture on all different signal types of in-
terest when positive weighting is used in the mixture vs.
when allowing real weighting in the combinations in the
above equations. Note how sharp edges constitute a chal-
lenge for Gaussians that have low pass bandwidth while a
square signal has an infinite bandwidth known by the sinc
function [25].
Loss Evaluation. The models’ performance was evalu-
ated based on the loss value after training. Additionally,
the model’s ability to represent the input signal was visu-
ally inspected through generated plots. Multiple runs per
configuration were executed to account for variance in the
results.
Stability Evaluation. Model stability and performance
were assessed using a series of experiments involving var-
ious signal types and mixture models. Each model was
trained on a 1D signal generated according to predefined
signal types (square, triangle, parabolic, half sinusoid,
Gaussian, and exponential), with the goal of minimizing the

mean squared error (MSE) loss between the model output
and the ground truth signal. The number of components
in the mixture models (N) varied among a set of values,
and models were also differentiated based on whether they
were constrained to positive weights. For a comprehensive
evaluation, each configuration was run multiple times (20
runs per configuration) to account for variability in the train-
ing process. During these runs, the number of instances
where the training resulted in a NaN loss was recorded
as an indicator of stability issues. The stability of each
model was quantified by the percentage of successful train-
ing runs (Total Runs−NaN Loss Counts

Total Runs × 100%). The experiments
that failed failed because the loss has diverged to NaN. This
typical numerical instability in optimization is the result of
learning the variance which can go close to zero, resulting
in the exponential formula (in Eq.(10)) to divide by an ex-
tremely small number.

The average MSE loss from successful runs was calcu-
lated to provide a measure of model performance. The re-
sults of these experiments were plotted, showing the rela-
tionship between the number of components and the stabil-
ity and loss of the models for each signal type.
Simulation Results. In the conducted analysis, both the
loss and stability of various mixture models with positive
and non-positive weights were evaluated on signals with
different shapes. As depicted in Figure 13, the Gaussian
Mixture Model with positive weights consistently yielded
the lowest loss across the number of components, indicat-
ing its effective approximation of the square signal. Con-
versely, non-positive weights in the Gaussian and General
models showed a higher loss, emphasizing the importance
of weight sign-on model performance. These findings high-
light the intricate balance between model complexity and
weight constraints in achieving both low loss and high sta-
bility. Note that GEF is very efficient in fitting the square
with few components, while LoG and DoG are more stable
for a larger number of components. Also, note that positive
weight mixtures tend to achieve lower loss with a smaller
number of components but are less stable for a larger num-
ber of components.

17

0 20 40 60 80 100
Number of Components (N)

10 4

10 3

10 2

10 1

Av
er

ag
e

Lo
ss

 (l
og

 sc
al

e)

Loss Value vs Number of Components on square signal
Gaussian (Positive)
Gaussian (Real)
DoG (Positive)
DoG (Real)
LoG (Positive)
LoG (Real)
GEF (Positive)
GEF (Real)

0 20 40 60 80 100
Number of Components (N)

0

20

40

60

80

100

St
ab

ilit
y

(%
)

Stability vs Number of Components on square signal

Gaussian (Positive)
Gaussian (Real)
DoG (Positive)
DoG (Real)
LoG (Positive)
LoG (Real)
GEF (Positive)
GEF (Real)

0 20 40 60 80 100
Number of Components (N)

10 4

10 3

10 2

10 1

100

Av
er

ag
e

Lo
ss

 (l
og

 sc
al

e)

Loss Value vs Number of Components on parabolic signal
Gaussian (Positive)
Gaussian (Real)
DoG (Positive)
DoG (Real)
LoG (Positive)
LoG (Real)
GEF (Positive)
GEF (Real)

0 20 40 60 80 100
Number of Components (N)

0

20

40

60

80

100

St
ab

ilit
y

(%
)

Stability vs Number of Components on parabolic signal

Gaussian (Positive)
Gaussian (Real)
DoG (Positive)
DoG (Real)
LoG (Positive)
LoG (Real)
GEF (Positive)
GEF (Real)

(a) Square signal (b) Parabolic signal

0 20 40 60 80 100
Number of Components (N)

10 4

10 3

10 2

Av
er

ag
e

Lo
ss

 (l
og

 sc
al

e)

Loss Value vs Number of Components on exponential signal
Gaussian (Positive)
Gaussian (Real)
DoG (Positive)
DoG (Real)
LoG (Positive)
LoG (Real)
GEF (Positive)
GEF (Real)

0 20 40 60 80 100
Number of Components (N)

0

20

40

60

80

100

St
ab

ilit
y

(%
)

Stability vs Number of Components on exponential signal

Gaussian (Positive)
Gaussian (Real)
DoG (Positive)
DoG (Real)
LoG (Positive)
LoG (Real)
GEF (Positive)
GEF (Real)

0 20 40 60 80 100
Number of Components (N)

10 5

10 4

10 3

10 2

10 1

Av
er

ag
e

Lo
ss

 (l
og

 sc
al

e)
Loss Value vs Number of Components on triangle signal

Gaussian (Positive)
Gaussian (Real)
DoG (Positive)
DoG (Real)
LoG (Positive)
LoG (Real)
GEF (Positive)
GEF (Real)

0 20 40 60 80 100
Number of Components (N)

0

20

40

60

80

100

St
ab

ilit
y

(%
)

Stability vs Number of Components on triangle signal

Gaussian (Positive)
Gaussian (Real)
DoG (Positive)
DoG (Real)
LoG (Positive)
LoG (Real)
GEF (Positive)
GEF (Real)

(c) Exponential signal (d) Triangle signal

0 20 40 60 80 100
Number of Components (N)

10 7

10 6

10 5

10 4

10 3

10 2

Av
er

ag
e

Lo
ss

 (l
og

 sc
al

e)

Loss Value vs Number of Components on gaussian signal

Gaussian (Positive)
Gaussian (Real)
DoG (Positive)
DoG (Real)
LoG (Positive)
LoG (Real)
GEF (Positive)
GEF (Real)

0 20 40 60 80 100
Number of Components (N)

0

20

40

60

80

100

St
ab

ilit
y

(%
)

Stability vs Number of Components on gaussian signal

Gaussian (Positive)
Gaussian (Real)
DoG (Positive)
DoG (Real)
LoG (Positive)
LoG (Real)
GEF (Positive)
GEF (Real)

0 20 40 60 80 100
Number of Components (N)

10 5

10 4

10 3

10 2

Av
er

ag
e

Lo
ss

 (l
og

 sc
al

e)

Loss Value vs Number of Components on half_sinusoid signal
Gaussian (Positive)
Gaussian (Real)
DoG (Positive)
DoG (Real)
LoG (Positive)
LoG (Real)
GEF (Positive)
GEF (Real)

0 20 40 60 80 100
Number of Components (N)

0

20

40

60

80

100

St
ab

ilit
y

(%
)

Stability vs Number of Components on half_sinusoid signal

Gaussian (Positive)
Gaussian (Real)
DoG (Positive)
DoG (Real)
LoG (Positive)
LoG (Real)
GEF (Positive)
GEF (Real)

(e) Gaussian signal (f) Half sinusoid signal

Figure 13. Numerical Simulation Results of Different Mixtures. We show a comparison of average loss and stability (percentage of
successful runs) for different mixture models optimized with gradient-based optimizers across varying numbers of components and weight
configurations (positive vs. real weights) on various signal types (a-f).

18

Gaussian Mixture LoG Mixture DoG Mixture GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting Gaussian Mixture to a square Function, N=2, loss=1.82
True square
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting LoG Mixture to a square Function, N=2, loss=8.06
True square
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

y

Overfitting DoG Mixture to a square Function, N=2, loss=1.73
True square
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting General Mixture to a square Function, N=2, loss=0.44
True square
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting Gaussian Mixture to a square Function, N=5, loss=0.48
True square
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting LoG Mixture to a square Function, N=5, loss=1.45
True square
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting DoG Mixture to a square Function, N=5, loss=0.86
True square
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting General Mixture to a square Function, N=5, loss=0.09
True square
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting Gaussian Mixture to a square Function, N=8, loss=nan
True square
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.5

0.0

0.5

1.0

1.5

y

Overfitting LoG Mixture to a square Function, N=8, loss=0.92
True square
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting DoG Mixture to a square Function, N=8, loss=0.29
True square
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting General Mixture to a square Function, N=8, loss=nan
True square
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting Gaussian Mixture to a square Function, N=10, loss=nan
True square
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.5

0.0

0.5

1.0

1.5

y

Overfitting LoG Mixture to a square Function, N=10, loss=0.87
True square
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting DoG Mixture to a square Function, N=10, loss=0.26
True square
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting General Mixture to a square Function, N=10, loss=nan
True square
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting Gaussian Mixture to a square Function, N=20, loss=nan
True square
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

y

Overfitting LoG Mixture to a square Function, N=20, loss=0.39
True square
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting DoG Mixture to a square Function, N=20, loss=0.03
True square
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting General Mixture to a square Function, N=20, loss=nan
True square
GEF Mixture

Figure 14. Numerical Simulation Examples of Fitting Squares with Positive Weights Mixtures (N= 2, 5, 8, and 10). We show some
fitting examples for Square signals with positive weights mixtures. The four mixtures used from left to right are Gaussians, LoG, DoG,
and General mixtures. From top to bottom: N = 2, 8, and 10 components. The optimized individual components are shown in green. Some
examples fail to optimize due to numerical instability in both Gaussians and GEF mixtures. Note that GEF is very efficient in fitting the
Square with few components while LoG and DoG are more stable for a larger number of components.

19

Gaussian Mixture LoG Mixture DoG Mixture GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

4

2

0

2

4

6

y

Overfitting Gaussian Mixture to a square Function, N=2, loss=1.91
True square
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting LoG Mixture to a square Function, N=2, loss=8.06
True square
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.25

0.00

0.25

0.50

0.75

1.00

1.25

y

Overfitting DoG Mixture to a square Function, N=2, loss=6.39
True square
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

6

4

2

0

2

4

6

8

y

Overfitting General Mixture to a square Function, N=2, loss=0.83
True square
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

4

2

0

2

4

6

y

Overfitting Gaussian Mixture to a square Function, N=5, loss=0.57
True square
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.0

0.5

0.0

0.5

1.0

y

Overfitting LoG Mixture to a square Function, N=5, loss=1.12
True square
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting DoG Mixture to a square Function, N=5, loss=0.86
True square
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

6

4

2

0

2

4

6

8

y

Overfitting General Mixture to a square Function, N=5, loss=0.16
True square
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

2

1

0

1

2

3

y

Overfitting Gaussian Mixture to a square Function, N=8, loss=0.24
True square
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

6

4

2

0

2

4

y

Overfitting LoG Mixture to a square Function, N=8, loss=0.87
True square
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

2

1

0

1

2

3

4

5

6

y

Overfitting DoG Mixture to a square Function, N=8, loss=0.94
True square
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

2

1

0

1

2

3

y

Overfitting General Mixture to a square Function, N=8, loss=0.10
True square
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting Gaussian Mixture to a square Function, N=10, loss=nan
True square
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

2

1

0

1

2

y

Overfitting LoG Mixture to a square Function, N=10, loss=0.40
True square
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.0

0.5

0.0

0.5

1.0

1.5

y

Overfitting DoG Mixture to a square Function, N=10, loss=0.20
True square
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

2

1

0

1

2

3

y

Overfitting General Mixture to a square Function, N=10, loss=0.09
True square
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting Gaussian Mixture to a square Function, N=20, loss=nan
True square
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

2

1

0

1

2

3

y

Overfitting LoG Mixture to a square Function, N=20, loss=0.12
True square
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.5

0.0

0.5

1.0

1.5

y

Overfitting DoG Mixture to a square Function, N=20, loss=0.01
True square
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting General Mixture to a square Function, N=20, loss=nan
True square
GEF Mixture

Figure 15. Numerical Simulation Examples of Fitting Squares with Real Weights Mixtures (N= 2, 5, 8, and 10). We show some
fitting examples for Square signals with Real weights mixtures (can be negative). The four mixtures used from left to right are Gaussians,
LoG, DoG, and General mixtures. From top to bottom: N = 2, 8, and 10 components. The optimized individual components are shown in
green. Some examples fail to optimize due to numerical instability in both Gaussians and GEF mixtures. Note that GEF is very efficient in
fitting the Square with few components while LoG and DoG are more stable for a larger number of components.

20

Gaussian Mixture LoG Mixture DoG Mixture GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

10

y

Overfitting Gaussian Mixture to a parabolic Function, N=2, loss=18.75
True parabolic
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

2

0

2

4

6

8

10

y

Overfitting LoG Mixture to a parabolic Function, N=2, loss=13.26
True parabolic
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

y

Overfitting DoG Mixture to a parabolic Function, N=2, loss=37.52
True parabolic
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

y

Overfitting General Mixture to a parabolic Function, N=2, loss=2.95
True parabolic
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

y

Overfitting Gaussian Mixture to a parabolic Function, N=5, loss=1.98
True parabolic
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

4

2

0

2

4

6

8

y

Overfitting LoG Mixture to a parabolic Function, N=5, loss=6.95
True parabolic
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

y

Overfitting DoG Mixture to a parabolic Function, N=5, loss=1.25
True parabolic
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

y

Overfitting General Mixture to a parabolic Function, N=5, loss=0.08
True parabolic
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

y

Overfitting Gaussian Mixture to a parabolic Function, N=8, loss=0.14
True parabolic
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

2

0

2

4

6

8

y

Overfitting LoG Mixture to a parabolic Function, N=8, loss=1.55
True parabolic
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

y

Overfitting DoG Mixture to a parabolic Function, N=8, loss=0.83
True parabolic
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

y

Overfitting General Mixture to a parabolic Function, N=8, loss=0.03
True parabolic
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

y

Overfitting Gaussian Mixture to a parabolic Function, N=10, loss=0.08
True parabolic
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

2

0

2

4

6

8

y

Overfitting LoG Mixture to a parabolic Function, N=10, loss=0.42
True parabolic
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

y

Overfitting DoG Mixture to a parabolic Function, N=10, loss=0.42
True parabolic
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

y

Overfitting General Mixture to a parabolic Function, N=10, loss=0.02
True parabolic
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

y

Overfitting Gaussian Mixture to a parabolic Function, N=20, loss=0.02
True parabolic
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

2

0

2

4

6

8

y

Overfitting LoG Mixture to a parabolic Function, N=20, loss=0.41
True parabolic
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

y

Overfitting DoG Mixture to a parabolic Function, N=20, loss=0.05
True parabolic
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

y

Overfitting General Mixture to a parabolic Function, N=20, loss=0.01
True parabolic
GEF Mixture

Figure 16. Numerical Simulation Examples of Fitting parabolics with Positive Weights Mixtures (N= 2, 5, 8, and 10). We show
some fitting examples for parabolic signals with positive weights mixtures. The four mixtures used from left to right are Gaussians, LoG,
DoG, and General mixtures. From top to bottom: N = 2, 8, and 10 components. The optimized individual components are shown in green.
Some examples fail to optimize due to numerical instability in both Gaussians and GEF mixtures. Note that GEF is very efficient in fitting
the parabolic with few components while LoG and DoG are more stable for a larger number of components.

21

Gaussian Mixture LoG Mixture DoG Mixture GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

y

Overfitting Gaussian Mixture to a parabolic Function, N=2, loss=nan
True parabolic
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

2

0

2

4

6

8

10

y

Overfitting LoG Mixture to a parabolic Function, N=2, loss=13.26
True parabolic
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

4

2

0

2

4

6

8

10

y

Overfitting DoG Mixture to a parabolic Function, N=2, loss=289.49
True parabolic
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

y

Overfitting General Mixture to a parabolic Function, N=2, loss=nan
True parabolic
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

y

Overfitting Gaussian Mixture to a parabolic Function, N=5, loss=nan
True parabolic
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

y

Overfitting LoG Mixture to a parabolic Function, N=5, loss=1.23
True parabolic
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

y

Overfitting DoG Mixture to a parabolic Function, N=5, loss=1.99
True parabolic
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

y

Overfitting General Mixture to a parabolic Function, N=5, loss=nan
True parabolic
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

y

Overfitting Gaussian Mixture to a parabolic Function, N=8, loss=nan
True parabolic
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

2

0

2

4

6

8

y

Overfitting LoG Mixture to a parabolic Function, N=8, loss=0.68
True parabolic
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

y

Overfitting DoG Mixture to a parabolic Function, N=8, loss=0.86
True parabolic
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

y

Overfitting General Mixture to a parabolic Function, N=8, loss=0.02
True parabolic
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

y

Overfitting Gaussian Mixture to a parabolic Function, N=10, loss=0.02
True parabolic
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

y

Overfitting LoG Mixture to a parabolic Function, N=10, loss=1.20
True parabolic
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

y

Overfitting DoG Mixture to a parabolic Function, N=10, loss=0.37
True parabolic
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

y

Overfitting General Mixture to a parabolic Function, N=10, loss=0.01
True parabolic
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

y

Overfitting Gaussian Mixture to a parabolic Function, N=20, loss=nan
True parabolic
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

2

0

2

4

6

8

y

Overfitting LoG Mixture to a parabolic Function, N=20, loss=0.02
True parabolic
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0

2

4

6

8

y

Overfitting DoG Mixture to a parabolic Function, N=20, loss=0.08
True parabolic
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

2

0

2

4

6

8

y

Overfitting General Mixture to a parabolic Function, N=20, loss=0.01
True parabolic
GEF Mixture

Figure 17. Numerical Simulation Examples of Fitting Parabolics with Real Weights Mixtures (N= 2, 5, 8, and 10). We show some
fitting examples for parabolic signals with Real weights mixtures (can be negative). The four mixtures used from left to right are Gaussians,
LoG, DoG, and General mixtures. From top to bottom: N = 2, 8, and 10 components. The optimized individual components are shown in
green. Some examples fail to optimize due to numerical instability in both Gaussians and GEF mixtures. Note that GEF is very efficient in
fitting the parabolic with few components while LoG and DoG are more stable for a larger number of components.

22

Gaussian Mixture LoG Mixture DoG Mixture GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting Gaussian Mixture to a exponential Function, N=2, loss=0.01
True exponential
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting LoG Mixture to a exponential Function, N=2, loss=0.35
True exponential
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting DoG Mixture to a exponential Function, N=2, loss=1.68
True exponential
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting General Mixture to a exponential Function, N=2, loss=nan
True exponential
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting Gaussian Mixture to a exponential Function, N=5, loss=nan
True exponential
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting LoG Mixture to a exponential Function, N=5, loss=0.02
True exponential
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting DoG Mixture to a exponential Function, N=5, loss=0.10
True exponential
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting General Mixture to a exponential Function, N=5, loss=nan
True exponential
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting Gaussian Mixture to a exponential Function, N=8, loss=nan
True exponential
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting LoG Mixture to a exponential Function, N=8, loss=0.01
True exponential
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting DoG Mixture to a exponential Function, N=8, loss=0.02
True exponential
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting General Mixture to a exponential Function, N=8, loss=nan
True exponential
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting Gaussian Mixture to a exponential Function, N=10, loss=nan
True exponential
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting LoG Mixture to a exponential Function, N=10, loss=0.00
True exponential
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting DoG Mixture to a exponential Function, N=10, loss=0.00
True exponential
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting General Mixture to a exponential Function, N=10, loss=nan
True exponential
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting Gaussian Mixture to a exponential Function, N=20, loss=nan
True exponential
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting LoG Mixture to a exponential Function, N=20, loss=0.00
True exponential
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting DoG Mixture to a exponential Function, N=20, loss=0.00
True exponential
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting General Mixture to a exponential Function, N=20, loss=nan
True exponential
GEF Mixture

Figure 18. Numerical Simulation Examples of Fitting Exponentials with Positive Weights Mixtures (N= 2, 5, 8, and 10). We show
some fitting examples for exponential signals with positive weight mixtures. The four mixtures used from left to right are Gaussians, LoG,
DoG, and General mixtures. From top to bottom: N = 2, 8, and 10 components. The optimized individual components are shown in green.
Some examples fail to optimize due to numerical instability in both Gaussians and GEF mixtures. Note that GEF is very efficient in fitting
the exponential with few components while LoG and DoG are more stable for a larger number of components.

23

Gaussian Mixture LoG Mixture DoG Mixture GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting Gaussian Mixture to a exponential Function, N=2, loss=nan
True exponential
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting LoG Mixture to a exponential Function, N=2, loss=1.39
True exponential
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

Overfitting DoG Mixture to a exponential Function, N=2, loss=1.01
True exponential
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

y

Overfitting General Mixture to a exponential Function, N=2, loss=0.01
True exponential
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting Gaussian Mixture to a exponential Function, N=5, loss=nan
True exponential
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

Overfitting LoG Mixture to a exponential Function, N=5, loss=0.02
True exponential
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting DoG Mixture to a exponential Function, N=5, loss=0.04
True exponential
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.0

0.5

0.0

0.5

1.0

y

Overfitting General Mixture to a exponential Function, N=5, loss=0.00
True exponential
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

y

Overfitting Gaussian Mixture to a exponential Function, N=8, loss=0.01
True exponential
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.5

1.0

0.5

0.0

0.5

1.0

y

Overfitting LoG Mixture to a exponential Function, N=8, loss=0.01
True exponential
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

Overfitting DoG Mixture to a exponential Function, N=8, loss=0.01
True exponential
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.0

0.5

0.0

0.5

1.0

y

Overfitting General Mixture to a exponential Function, N=8, loss=0.00
True exponential
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.0

0.5

0.0

0.5

1.0

1.5

y

Overfitting Gaussian Mixture to a exponential Function, N=10, loss=0.00
True exponential
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.0

0.5

0.0

0.5

1.0

1.5

y

Overfitting LoG Mixture to a exponential Function, N=10, loss=0.00
True exponential
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

Overfitting DoG Mixture to a exponential Function, N=10, loss=0.00
True exponential
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.5

1.0

0.5

0.0

0.5

1.0

y

Overfitting General Mixture to a exponential Function, N=10, loss=0.00

True exponential
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

Overfitting Gaussian Mixture to a exponential Function, N=20, loss=0.01
True exponential
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

Overfitting LoG Mixture to a exponential Function, N=20, loss=0.00
True exponential
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.0

0.5

0.0

0.5

1.0

y

Overfitting DoG Mixture to a exponential Function, N=20, loss=0.00
True exponential
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

Overfitting General Mixture to a exponential Function, N=20, loss=0.00
True exponential
GEF Mixture

Figure 19. Numerical Simulation Examples of Fitting Exponentials with Real Weights Mixtures (N= 2, 5, 8, and 10). We show
some fitting examples for exponential signals with Real weights mixtures (can be negative). The four mixtures used from left to right are
Gaussians, LoG, DoG, and General mixtures. From top to bottom: N = 2, 8, and 10 components. The optimized individual components
are shown in green. Some examples fail to optimize due to numerical instability in both Gaussians and GEF mixtures. Note that GEF is
very efficient in fitting the exponential with few components while LoG and DoG are more stable for a larger number of components.

24

Gaussian Mixture LoG Mixture DoG Mixture GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Overfitting Gaussian Mixture to a triangle Function, N=2, loss=0.34
True triangle
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Overfitting LoG Mixture to a triangle Function, N=2, loss=0.90
True triangle
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Overfitting DoG Mixture to a triangle Function, N=2, loss=4.43
True triangle
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Overfitting General Mixture to a triangle Function, N=2, loss=0.05
True triangle
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Overfitting Gaussian Mixture to a triangle Function, N=5, loss=0.02
True triangle
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Overfitting LoG Mixture to a triangle Function, N=5, loss=0.27
True triangle
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Overfitting DoG Mixture to a triangle Function, N=5, loss=0.06
True triangle
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Overfitting General Mixture to a triangle Function, N=5, loss=0.00
True triangle
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Overfitting Gaussian Mixture to a triangle Function, N=8, loss=0.01
True triangle
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Overfitting LoG Mixture to a triangle Function, N=8, loss=0.05
True triangle
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Overfitting DoG Mixture to a triangle Function, N=8, loss=0.01
True triangle
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Overfitting General Mixture to a triangle Function, N=8, loss=0.00
True triangle
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Overfitting Gaussian Mixture to a triangle Function, N=10, loss=0.01
True triangle
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Overfitting LoG Mixture to a triangle Function, N=10, loss=0.04
True triangle
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Overfitting DoG Mixture to a triangle Function, N=10, loss=0.01
True triangle
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Overfitting General Mixture to a triangle Function, N=10, loss=0.00
True triangle
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Overfitting Gaussian Mixture to a triangle Function, N=20, loss=nan
True triangle
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Overfitting LoG Mixture to a triangle Function, N=20, loss=0.01
True triangle
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Overfitting DoG Mixture to a triangle Function, N=20, loss=0.00
True triangle
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Overfitting General Mixture to a triangle Function, N=20, loss=nan
True triangle
GEF Mixture

Figure 20. Numerical Simulation Examples of Fitting Triangles with Positive Weights Mixtures (N= 2, 5, 8, and 10). We show some
fitting examples for triangle signals with positive weight mixtures. The four mixtures used from left to right are Gaussians, LoG, DoG, and
General mixtures. From top to bottom: N = 2, 8, and 10 components. The optimized individual components are shown in green. Some
examples fail to optimize due to numerical instability in both Gaussians and GEF mixtures. Note that GEF is very efficient in fitting the
triangle with few components while LoG and DoG are more stable for a larger number of components.

25

Gaussian Mixture LoG Mixture DoG Mixture GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Overfitting Gaussian Mixture to a triangle Function, N=2, loss=nan
True triangle
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Overfitting LoG Mixture to a triangle Function, N=2, loss=0.90
True triangle
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Overfitting DoG Mixture to a triangle Function, N=2, loss=89.91
True triangle
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Overfitting General Mixture to a triangle Function, N=2, loss=nan
True triangle
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1

0

1

2

3

y

Overfitting Gaussian Mixture to a triangle Function, N=5, loss=0.04
True triangle
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1

0

1

2

3

y

Overfitting LoG Mixture to a triangle Function, N=5, loss=3.52
True triangle
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1

0

1

2

3

y

Overfitting DoG Mixture to a triangle Function, N=5, loss=0.03
True triangle
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Overfitting General Mixture to a triangle Function, N=5, loss=0.01
True triangle
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Overfitting Gaussian Mixture to a triangle Function, N=8, loss=0.00
True triangle
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1

0

1

2

3

y

Overfitting LoG Mixture to a triangle Function, N=8, loss=0.27
True triangle
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Overfitting DoG Mixture to a triangle Function, N=8, loss=0.35
True triangle
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Overfitting General Mixture to a triangle Function, N=8, loss=0.00
True triangle
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

2

1

0

1

2

3

y

Overfitting Gaussian Mixture to a triangle Function, N=10, loss=0.05
True triangle
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1

0

1

2

3

y

Overfitting LoG Mixture to a triangle Function, N=10, loss=0.27
True triangle
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Overfitting DoG Mixture to a triangle Function, N=10, loss=0.01
True triangle
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1

0

1

2

3

y

Overfitting General Mixture to a triangle Function, N=10, loss=0.00
True triangle
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1

0

1

2

3

y

Overfitting Gaussian Mixture to a triangle Function, N=20, loss=0.00
True triangle
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1

0

1

2

3

y

Overfitting LoG Mixture to a triangle Function, N=20, loss=0.01
True triangle
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

y

Overfitting DoG Mixture to a triangle Function, N=20, loss=0.00
True triangle
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1

0

1

2

3

y

Overfitting General Mixture to a triangle Function, N=20, loss=0.00
True triangle
GEF Mixture

Figure 21. Numerical Simulation Examples of Fitting Triangles with Real Weights Mixtures (N= 2, 5, 8, and 10). We show some
fitting examples for triangle signals with Real weights mixtures (can be negative). The four mixtures used from left to right are Gaussians,
LoG, DoG, and General mixtures. From top to bottom: N = 2, 8, and 10 components. The optimized individual components are shown in
green. Some examples fail to optimize due to numerical instability in both Gaussians and GEF mixtures. Note that GEF is very efficient in
fitting the triangle with few components while LoG and DoG are more stable for a larger number of components.

26

Gaussian Mixture LoG Mixture DoG Mixture GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting Gaussian Mixture to a gaussian Function, N=2, loss=0.00
True gaussian
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting LoG Mixture to a gaussian Function, N=2, loss=0.02
True gaussian
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting DoG Mixture to a gaussian Function, N=2, loss=0.92
True gaussian
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting General Mixture to a gaussian Function, N=2, loss=0.00
True gaussian
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting Gaussian Mixture to a gaussian Function, N=5, loss=0.00
True gaussian
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting LoG Mixture to a gaussian Function, N=5, loss=0.00
True gaussian
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting DoG Mixture to a gaussian Function, N=5, loss=0.01
True gaussian
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting General Mixture to a gaussian Function, N=5, loss=0.00
True gaussian
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting Gaussian Mixture to a gaussian Function, N=8, loss=nan
True gaussian
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting LoG Mixture to a gaussian Function, N=8, loss=0.00
True gaussian
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting DoG Mixture to a gaussian Function, N=8, loss=0.00
True gaussian
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting General Mixture to a gaussian Function, N=8, loss=nan
True gaussian
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting Gaussian Mixture to a gaussian Function, N=10, loss=nan
True gaussian
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting LoG Mixture to a gaussian Function, N=10, loss=0.00
True gaussian
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting DoG Mixture to a gaussian Function, N=10, loss=0.00
True gaussian
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting General Mixture to a gaussian Function, N=10, loss=nan
True gaussian
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting Gaussian Mixture to a gaussian Function, N=20, loss=nan
True gaussian
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.5

0.0

0.5

1.0

1.5

y

Overfitting LoG Mixture to a gaussian Function, N=20, loss=0.00
True gaussian
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting DoG Mixture to a gaussian Function, N=20, loss=0.00
True gaussian
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting General Mixture to a gaussian Function, N=20, loss=nan
True gaussian
GEF Mixture

Figure 22. Numerical Simulation Examples of Fitting Gaussians with Positive Weights Mixtures (N= 2, 5, 8, and 10). We show
some fitting examples for Gaussian signals with positive weight mixtures. The four mixtures used from left to right are Gaussians, LoG,
DoG, and General mixtures. From top to bottom: N = 2, 8, and 10 components. The optimized individual components are shown in green.
Some examples fail to optimize due to numerical instability in both Gaussians and GEF mixtures. Note that GEF is very efficient in fitting
the Gaussian with few components while LoG and DoG are more stable for a larger number of components.

27

Gaussian Mixture LoG Mixture DoG Mixture GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting Gaussian Mixture to a gaussian Function, N=2, loss=0.00
True gaussian
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting LoG Mixture to a gaussian Function, N=2, loss=3.28
True gaussian
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

y

Overfitting DoG Mixture to a gaussian Function, N=2, loss=4.55
True gaussian
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting General Mixture to a gaussian Function, N=2, loss=0.00
True gaussian
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting Gaussian Mixture to a gaussian Function, N=5, loss=0.00
True gaussian
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

2

1

0

1

2

y

Overfitting LoG Mixture to a gaussian Function, N=5, loss=0.00
True gaussian
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting DoG Mixture to a gaussian Function, N=5, loss=0.28
True gaussian
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.25

y

Overfitting General Mixture to a gaussian Function, N=5, loss=0.00
True gaussian
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.5

1.0

0.5

0.0

0.5

1.0

y

Overfitting Gaussian Mixture to a gaussian Function, N=8, loss=0.00
True gaussian
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.5

0.0

0.5

1.0

1.5

y

Overfitting LoG Mixture to a gaussian Function, N=8, loss=0.00
True gaussian
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting DoG Mixture to a gaussian Function, N=8, loss=0.00
True gaussian
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

y

Overfitting General Mixture to a gaussian Function, N=8, loss=0.00
True gaussian
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

2

1

0

1

2

y

Overfitting Gaussian Mixture to a gaussian Function, N=10, loss=0.00
True gaussian
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

2

1

0

1

y

Overfitting LoG Mixture to a gaussian Function, N=10, loss=0.00
True gaussian
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting DoG Mixture to a gaussian Function, N=10, loss=0.00
True gaussian
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

Overfitting General Mixture to a gaussian Function, N=10, loss=0.00
True gaussian
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.0

0.5

0.0

0.5

1.0

y

Overfitting Gaussian Mixture to a gaussian Function, N=20, loss=0.00
True gaussian
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

Overfitting LoG Mixture to a gaussian Function, N=20, loss=0.00
True gaussian
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.0

0.5

0.0

0.5

1.0

y

Overfitting DoG Mixture to a gaussian Function, N=20, loss=0.00
True gaussian
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.5

1.0

0.5

0.0

0.5

1.0

y

Overfitting General Mixture to a gaussian Function, N=20, loss=0.00
True gaussian
GEF Mixture

Figure 23. Numerical Simulation Examples of Fitting Gaussians with Real Weights Mixtures (N= 2, 5, 8, and 10). We show some
fitting examples for Gaussian signals with Real weights mixtures (can be negative). The four mixtures used from left to right are Gaussians,
LoG, DoG, and General mixtures. From top to bottom: N = 2, 8, and 10 components. The optimized individual components are shown in
green. Some examples fail to optimize due to numerical instability in both Gaussians and GEF mixtures. Note that GEF is very efficient in
fitting the Gaussian with few components while LoG and DoG are more stable for a larger number of components.

28

Gaussian Mixture LoG Mixture DoG Mixture GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting Gaussian Mixture to a half_sinusoid Function, N=2, loss=0.04
True half_sinusoid
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0
y

Overfitting LoG Mixture to a half_sinusoid Function, N=2, loss=0.12
True half_sinusoid
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting DoG Mixture to a half_sinusoid Function, N=2, loss=0.48
True half_sinusoid
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting General Mixture to a half_sinusoid Function, N=2, loss=0.02
True half_sinusoid
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting Gaussian Mixture to a half_sinusoid Function, N=5, loss=0.00
True half_sinusoid
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting LoG Mixture to a half_sinusoid Function, N=5, loss=0.09
True half_sinusoid
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting DoG Mixture to a half_sinusoid Function, N=5, loss=0.01
True half_sinusoid
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting General Mixture to a half_sinusoid Function, N=5, loss=0.00
True half_sinusoid
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting Gaussian Mixture to a half_sinusoid Function, N=8, loss=0.00
True half_sinusoid
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting LoG Mixture to a half_sinusoid Function, N=8, loss=0.01
True half_sinusoid
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting DoG Mixture to a half_sinusoid Function, N=8, loss=0.01
True half_sinusoid
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting General Mixture to a half_sinusoid Function, N=8, loss=nan
True half_sinusoid
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting Gaussian Mixture to a half_sinusoid Function, N=10, loss=nan
True half_sinusoid
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting LoG Mixture to a half_sinusoid Function, N=10, loss=0.01
True half_sinusoid
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting DoG Mixture to a half_sinusoid Function, N=10, loss=0.00
True half_sinusoid
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting General Mixture to a half_sinusoid Function, N=10, loss=nan
True half_sinusoid
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting Gaussian Mixture to a half_sinusoid Function, N=20, loss=nan
True half_sinusoid
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting LoG Mixture to a half_sinusoid Function, N=20, loss=0.00
True half_sinusoid
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting DoG Mixture to a half_sinusoid Function, N=20, loss=0.00
True half_sinusoid
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting General Mixture to a half_sinusoid Function, N=20, loss=nan
True half_sinusoid
GEF Mixture

Figure 24. Numerical Simulation Examples of Fitting Half sinusoids with Positive Weights Mixtures (N= 2, 5, 8, and 10). We show
some fitting examples for half sinusoid signals with positive weights mixtures. The four mixtures used from left to right are Gaussians,
LoG, DoG, and General mixtures. From top to bottom: N = 2, 8, and 10 components. The optimized individual components are shown in
green. Some examples fail to optimize due to numerical instability in both Gaussians and GEF mixtures. Note that GEF is very efficient in
fitting the half sinusoid with few components while LoG and DoG are more stable for a larger number of components.

29

Gaussian Mixture LoG Mixture DoG Mixture GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting Gaussian Mixture to a half_sinusoid Function, N=2, loss=0.04
True half_sinusoid
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.2

0.0

0.2

0.4

0.6

0.8

1.0
y

Overfitting LoG Mixture to a half_sinusoid Function, N=2, loss=0.12
True half_sinusoid
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting DoG Mixture to a half_sinusoid Function, N=2, loss=0.48
True half_sinusoid
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting General Mixture to a half_sinusoid Function, N=2, loss=0.02
True half_sinusoid
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

Overfitting Gaussian Mixture to a half_sinusoid Function, N=5, loss=0.01
True half_sinusoid
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

y

Overfitting LoG Mixture to a half_sinusoid Function, N=5, loss=0.08
True half_sinusoid
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

Overfitting DoG Mixture to a half_sinusoid Function, N=5, loss=0.01
True half_sinusoid
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

Overfitting General Mixture to a half_sinusoid Function, N=5, loss=0.00
True half_sinusoid
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.5

0.0

0.5

1.0

1.5

y

Overfitting Gaussian Mixture to a half_sinusoid Function, N=8, loss=0.00
True half_sinusoid
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

Overfitting LoG Mixture to a half_sinusoid Function, N=8, loss=0.02
True half_sinusoid
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting DoG Mixture to a half_sinusoid Function, N=8, loss=0.00
True half_sinusoid
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

y

Overfitting General Mixture to a half_sinusoid Function, N=8, loss=0.00
True half_sinusoid
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.0

0.5

0.0

0.5

1.0

1.5

y

Overfitting Gaussian Mixture to a half_sinusoid Function, N=10, loss=0.00
True half_sinusoid
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

Overfitting LoG Mixture to a half_sinusoid Function, N=10, loss=0.01
True half_sinusoid
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

y

Overfitting DoG Mixture to a half_sinusoid Function, N=10, loss=0.00
True half_sinusoid
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.0

0.5

0.0

0.5

1.0

1.5

y

Overfitting General Mixture to a half_sinusoid Function, N=10, loss=0.00
True half_sinusoid
GEF Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

y

Overfitting Gaussian Mixture to a half_sinusoid Function, N=20, loss=0.00
True half_sinusoid
Gaussian Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

Overfitting LoG Mixture to a half_sinusoid Function, N=20, loss=0.00
True half_sinusoid
LoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

y

Overfitting DoG Mixture to a half_sinusoid Function, N=20, loss=0.00
True half_sinusoid
DoG Mixture

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y

Overfitting General Mixture to a half_sinusoid Function, N=20, loss=0.00
True half_sinusoid
GEF Mixture

Figure 25. Numerical Simulation Examples of Fitting Half sinusoids with Real Weights Mixtures (N= 2, 5, 8, and 10). We show
some fitting examples for half sinusoid signals with Real weights mixtures (can be negative). The four mixtures used from left to right are
Gaussians, LoG, DoG, and General mixtures. From top to bottom: N = 2, 8, and 10 components. The optimized individual components
are shown in green. Some examples fail to optimize due to numerical instability in both Gaussians and GEF mixtures. Note that GEF is
very efficient in fitting the half sinusoid with few components while LoG and DoG are more stable for a larger number of components.

30

B. Genealized Exponential Splatting Details
B.1. Upper Bound on the Boundary View-

Dependant Error in the Approximate GES
Rasterization

Given the Generalized Exponential Splatting (GES)
function defined in Eq.(2) and our approximate rasteriza-
tion given by Eq.(3),4, and 5, we seek to establish an upper
bound on the error of our approximation in GES rendering.
Since it is very difficult to estimate the error accumulated
in each individual pixel from Eq.(3), we seek to estimate
the error directly on each splatting component affecting the
energy of all passing rays.

Let us consider a simple 2D case with symmetrical com-
ponents as in Fig.6. The error between the scaled Gaussian
component and the original GES component is related to
the energy loss of rays and can be represented by simply es-
timating the ratio η between the area difference and the area
of the scaled Gaussian. Here we will show we can estimate
an upper bound on η relative to the area of each component.

For the worst-case scenario when β → ∞, we consider
two non-overlapping conditions for the approximation: one
where the square is the outer shape and one where the circle
covers the square. The side length of the square is 2r for the
former case and 2r/

√
2 for the latter case. The radius r of

the circle is determined by the effective projected variance
α from Eq.(4). For a square with side length 2r and a circle
with radius r, we have: Asquare = 4r2, Acircle = πr2. For a
square with side length 2r/

√
2, the area is:Asquare, covered =

2r2.
The area difference ∆A is:

∆Asquare larger = Asquare −Acircle = 4r2 − πr2, (29)

∆Acircle larger = Acircle −Asquare, covered = πr2 − 2r2.
(30)

The ratio of the difference in areas to the area of the inner
shape, denoted as η, is bounded by:

ηsquare larger =
∆Asquare larger

Acircle
=

4r2 − πr2

πr2
≈ 0.2732,

(31)

ηcircle larger =
∆Acircle larger

Acircle
=

πr2 − 2r2

πr2
≈ 0.3634. (32)

Due to the PDF normalization constraint in GND [14],
the approximation followed in Eq.(4), and 5 will always en-
sure ηsquare larger ≤ η ≤ ηcircle larger. Thus, our target ratio η
when using our approximate scaling of variance based on β
should be within the range 0.2732 ≤ η ≤ 0.3634. This im-
plies in the worst case, our GES approximation will result
in 36.34% energy error in the lost energy of all rays passing
through all the splatting components. In practice, the error
will be much smaller due to the large number of compo-
nents and the small scale of all the splatting components.

B.2. Implementation Details

Note that the DoG in Eq.(7) will be very large when σ2 is
large, so we downsample the ground truth image by a fac-
tor ‘scaleim,freq‘ and upsample the mask Mω similarly be-
fore calculating the loss in Eq.(8). In the implementation
of our Generalized Exponential Splatting (GES) approach,
we fine-tuned several hyperparameters to optimize the per-
formance. The following list details the specific values and
purposes of each parameter in our implementation:

• Iterations: The algorithm ran for a total of 40,000 iter-
ations.

• Learning Rates:

– Initial position learning rate (lrpos, init) was set to
0.00016.

– Final position learning rate (lrpos, final) was re-
duced to 0.0000016.

– Learning rate delay multiplier (lrdelay mult) was set
to 0.01.

– Maximum steps for position learning rate
(lrpos, max steps) were set to 30,000.

• Other Learning Rates:

– Feature learning rate (lrfeature) was 0.0025.

– Opacity learning rate (lropacity) was 0.05.

– Shape and rotation learning rates (lrshape and
lrrotation) were both set to 0.001.

– Scaling learning rate (lrscaling) was 0.005.

• Density and Pruning Parameters:

– Percentage of dense points (percentdense) was
0.01.

– Opacity and shape pruning thresholds were set to
0.005.

• Loss Weights and Intervals:

– SSIM loss weight (λssim) was 0.2.

– Densification, opacity reset, shape reset, and
shape pruning intervals were set to 100, 3000,
1000, and 100 iterations, respectively.

• Densification Details:

– Densification started from iteration 500 and con-
tinued until iteration 15,000.

– Gradient threshold for densification was set to
0.0003.

• Image Laplacian Parameters:

31

– Image Laplacian scale factor (scaleim,freq) was
0.2.

– Weight for image Laplacian loss (λω) was 0.5.

• Miscellaneous:

– Strength of shape ρ was set to 0.1.

These parameters were carefully chosen to balance the
trade-off between computational efficiency and the fidelity
of the synthesized views. The above hyperparameter con-
figuration played a crucial role in the effective implemen-
tation of our GES approach. For implementation purposes,
the modification functions have been shifted by -2 and the β
initialization is set to 0 instead of 2 (which should not have
any effect on the optimization).

C. Additional Results and Analysis
C.1. Additional Results

We show in Fig.32 additional GES results (test views)
and comparisons to the ground truth and baselines. In
Fig.33, show PSNR, LPIPS, SSIM, and file size results for
every single scene in MIPNeRF 360 dataset [5, 6] of our
GES and re-running the Gaussian Splatting [27] baseline
with the exact same hyperparameters of our GES and on
different number of iterations.

C.2. Applying GES in Fast 3D Generation
GES is adapted to modern 3D generation pipelines using

score distillation sampling from a 2D text-to-image model
[50], replacing Gaussian Splatting for improved efficiency.
We employ the same setup as DreamGaussian [68], altering
only the 3D representation to GES . This change demon-
strates GES ’s capability for real-time representation appli-
cations and memory efficiency.

For evaluation, we use datasets NeRF4 and Real-
Fusion15 with metrics PSNR, LPIPS [87], and CLIP-
similarity [53] following the benchmarks in Realfusion [41]
and Magic123 [52]. Our GES exhibits swift optimization
with an average runtime of 2 minutes, maintaining quality,
as shown in Table 3 and Fig.26.

C.3. Shape Parameters

In Table 5, we explore the effect of all hyperparameters
associated with the new shape parameter on novel view syn-
thesis performance. We find that the optimization process
is relatively robust to these changes, as it retains relatively
strong performance and yields results with similar sizes.
Density Gradient Threshold. In Fig.27, we visualize the
impact of modifying the density gradient threshold for split-
ting, using both GES and the standard Gaussian Splatting (
after modifying the setup for a fair comparison to GES). We

Dataset Metrics\Methods Point-E DreamGaussian GES (Ours)

NeRF4 CLIP-Similarity↑ 0.48 0.56 0.58
PSNR↑ 0.70 13.48 13.33

RealFusion15 CLIP-Similarity↑ 0.53 0.70 0.70
PSNR↑ 0.98 12.83 12.91

- Average Runtime ↓ 78 secs 2 mins 2 mins

Table 3. GES Application: Fast Image-to-3D Genera-
tion pipeline We show quantitative results in terms of CLIP-
Similarity↑ / PSNR↑ , and Runtime↓, compared to fast methods:
Point-E [46] and DreamGaussian [68] . GES offers a good option
for a fast and effective image-to-3D solution.

see that the threshold has a significant impact on the trade-
off between performance and size, with a higher threshold
decreasing size at the expense of performance. Notably, we
see that GES outperforms GS across the range of density
gradient thresholds, yielding similar performance while us-
ing less memory.

C.4. Analysing the Frequency-Modulated Image
Loss

We study the effect of the frequency-modulated loss Lω

on the performance by varying λω and show the results in
Table 4 and Table 2. Note that increasing λω in GES indeed
reduces the size of the file, but can affect the performance.
We chose λω = 0.5 as a middle ground between improved
performance and reduced file size.

C.5. Visualizing the Distribution of Parameters

We visualize the distribution of shape parameters β in
Fig.28 and the sizes of the splatting components in Fig.29.
They clearly show a smooth distribution of the components
in the scene, which indicates the importance of initializa-
tion. This hints a possible future direction in this line of
research.

C.6. Typical Convergence Plots

We show in Fig.30 examples of the convergence plots
of both GES and Gaussians if the training continues up to
50K iterations to inspect the diminishing returns of more
training. Despite requiring more iterations to converge,
GES trains faster than Gaussians due to its smaller number
of splatting components.

32

Reference

Novel view 1

Novel view 2

Source view

Realfusion15 NeRF4 StableDiffusion-XL

Figure 26. Visulization for 3D generation. We show selected
generated examples by GES from Realfusion15 (left) and NeRF4
datasets (middle). Additionally, we pick two text prompts: ”a car
made out of sushi” and ”Michelangelo style statue of an astro-
naut”, and then use StableDiffusion-XL [49] to generate the refer-
ence images before using GES on them(right).

0.0001 0.0001 0.0002 0.0002 0.0003 0.0003 0.0004

0.20

0.22

0.24

0.26

0.0001 0.0001 0.0002 0.0002 0.0003 0.0003 0.0004

256

512

1024

2048

Method
Gaussians
Ours

Densification Threshold

LP
IP

S
 (l

ow
er

 is
 b

et
te

r)
Fi

le
 S

iz
e

(lo
w

er
 is

 b
et

te
r)

Figure 27. Ablation Study of Densification Threshold on Novel
View Synthesis. Impact of the densification threshold on recon-
struction quality (LPIPS) and file size (MB) for our method and
Gaussian Splatting [27], averaged across all scenes in the Mip-
NeRF dataset. We see that the densification threshold has a sig-
nificant impact on both file size and quality. Across the board,
our method produces smaller scenes than Gaussian Splatting with
similar or even slightly improved performance.

λfreq Method PSNR LPIPS SSIM Size

Deep Blending

0.05 GES 29.58 0.252 0.900 431
GES (fixed β = 2) 29.53 0.251 0.901 433

0.10 GES 29.54 0.252 0.901 428
GES (fixed β = 2) 29.61 0.252 0.901 435

0.50 GES 29.66 0.251 0.901 397
GES (fixed β = 2) 29.61 0.252 0.901 437

0.90 GES 27.21 0.259 0.899 366
GES (fixed β = 2) 29.62 0.252 0.901 434

MipNeRF

0.05 GES 27.08 0.250 0.796 405
GES (fixed β = 2) 27.05 0.250 0.795 411

0.10 GES 27.05 0.250 0.795 403
GES (fixed β = 2) 27.05 0.250 0.796 412

0.50 GES 26.97 0.252 0.794 376
GES (fixed β = 2) 27.09 0.250 0.796 415

0.90 GES 25.82 0.255 0.792 364
GES (fixed β = 2) 27.08 0.250 0.795 413

Tanks and Temples

0.05 GES 23.49 0.196 0.837 251
GES (fixed β = 2) 23.55 0.196 0.836 255

0.10 GES 23.54 0.196 0.837 247
GES (fixed β = 2) 23.53 0.196 0.837 255

0.50 GES 23.35 0.197 0.836 221
GES (fixed β = 2) 23.65 0.196 0.837 256

0.90 GES 22.65 0.200 0.834 210
GES (fixed β = 2) 23.50 0.197 0.836 256

Table 4. Ablation of λfreq. We show a comparison of performance
(PSNR, LPIPS, SSIM) for various values of λfreq. Note that in-
creasing λfreq in GES indeed reduces the size of the file, but can
affect the performance. We chose λfreq = 0.5 as a middle ground
between improved performance and reduced file size.

33

1.0 1.5 2.0 2.5 3.0
Shape Value ()

0

20000

40000

60000

Fr
eq

ue
nc

y

Figure 28. Distribution of Shape Values. We show a distribution
of β values of a converged GES initialized with β = 2. It shows a
slight bias to β smaller than 2.

5 10 15 20
Sizes

0

500

1000

Fr
eq

ue
nc

y

L 2
L

Figure 29. Distribution of Sizes. We show a distribution of sizes
(L2 and L∞) of the GES components of a converged scene.

Shape
Learning Rate

PSNR SSIM LPIPS File Size (MB)

0.0005 26.83 0.845 0.141 659
0.0010 26.85 0.845 0.141 658
0.0015 26.89 0.846 0.141 651
0.0020 26.82 0.844 0.142 658

Shape
Reset Interval

PSNR SSIM LPIPS File Size (MB)

200 26.87 0.845 0.141 656
500 26.86 0.845 0.141 658
1000 26.89 0.846 0.141 651
2000 26.84 0.845 0.141 657
5000 26.84 0.845 0.141 661

Shape
Strength

PSNR SSIM LPIPS File Size (MB)

0.010 26.87 0.845 0.141 661
0.050 26.84 0.845 0.141 653
0.100 26.89 0.846 0.141 651
0.150 26.83 0.844 0.142 656

Table 5. Ablation Study on Novel View Synthesis. Impact of
the shape parameter’s learning rate, reset interval, and strength on
reconstruction quality and file size for the garden scene from the
Mip-NeRF dataset.

Ablation Setup PSNR↑ SSIM↑ LPIPS↓ Size (MB)↓

Gaussians 23.14 0.841 0.183 411
GES w/o Lω 23.54 0.836 0.197 254
GES w/ random β init. 23.37 0.836 0.198 223
GES w/ β = 2 init. 23.35 0.836 0.198 222

Table 6. Ablation Study on Novel View Synthesis. We study the
impact of several components in GES on the reconstruction quality
and file size in the Tanks & Temples dataset.

34

L1 Loss Train Loss Train PSNR

Number of Components Test Loss Test PSNR

Figure 30. Convergence Plots of Gaussians vs. GES . We show an example of the convergence plots of both GES and Gaussians if the
training continues up to 50K iterations to inspect the diminishing returns of more training. Despite requiring more iterations to converge,
GES trains faster than Gaussians due to its smaller number of splatting components.

35

Figure 31. Frequency-Modulated Image Masks. For the input example image on the top left, We show examples of the frequency loss
masks Mω used in Sec.4.3 for different numbers of target normalized frequencies ω (ω = 0% for low frequencies to ω = 100% for
high frequencies). This masked loss helps our GES learn specific bands of frequencies. Note that due to Laplacian filter sensitivity for
high-frequencies, the mask for 0 < ω ≤ 50% is defined as 1−Mω for 50 < ω ≤ 100%. This ensures that all parts of the image will be
covered by one of the masks Mω , while focusing on the details more as the optimization progresses.

36

Ground Truth GES (Ours) Gaussians Mip-NeRF360 InstantNGP

Figure 32. Comparative Visualization Across Methods. Displayed are side-by-side comparisons between our proposed method and
established techniques alongside their respective ground truth imagery. The depicted scenes are ordered as follows: BICYCLE, GARDEN,
STUMP, COUNTER, and ROOM from the Mip-NeRF360 dataset; PLAYROOM and DRJOHNSON from the Deep Blending dataset, and
TRUCK and TRAIN from Tanks&Temples. Subtle variances in rendering quality are accentuated through zoomed-in details. It might
be difficult to see differences between GES and Gaussians because they have almost the same PSNR (despite GES requiring 50% less
memory).

37

40000

30000

7000

0

5

10

15

20

25

30

40000

30000

7000

40000

30000

7000

40000

30000

7000

40000

30000

7000

40000

30000

7000

40000

30000

7000

40000

30000

7000

40000

30000

7000

40000

30000

7000

40000

30000

7000

method
Gaussian

GES

value value value value value value value value value value value

P
S
N
R

bicycle drjohnson counter bonsai garden playroom room truck kitchen train stump

40000

30000

7000

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

40000

30000

7000

40000

30000

7000

40000

30000

7000

40000

30000

7000

40000

30000

7000

40000

30000

7000

40000

30000

7000

40000

30000

7000

40000

30000

7000

40000

30000

7000

method
Gaussian

GES

value value value value value value value value value value value

LP
IP
S

bicycle drjohnson counter bonsai garden playroom room truck kitchen train stump

40000

30000

7000

0

0.2

0.4

0.6

0.8

40000

30000

7000

40000

30000

7000

40000

30000

7000

40000

30000

7000

40000

30000

7000

40000

30000

7000

40000

30000

7000

40000

30000

7000

40000

30000

7000

40000

30000

7000

method
Gaussian

GES

value value value value value value value value value value value

S
S
IM

bicycle drjohnson counter bonsai garden playroom room truck kitchen train stump

40000

30000

7000

0

100

200

300

400

500

600

700

40000

30000

7000

40000

30000

7000

40000

30000

7000

40000

30000

7000

40000

30000

7000

40000

30000

7000

40000

30000

7000

40000

30000

7000

40000

30000

7000

40000

30000

7000

method
Gaussian

GES

value value value value value value value value value value value

F
ile

 S
iz

e

bicycle drjohnson counter bonsai garden playroom room truck kitchen train stump

Figure 33. Detailed Per Scene Results On MipNeRF 360 for Different Iteration Numbers. We show PSNR, LPIPS, SSIM, and file size
results for every single scene in MIPNeRF 360 dataset [5] of our GES and re-running the Gaussian Splatting [27] baseline with the exact
same hyperparameters of our GES and on different number of iterations.

38

Ground Truth GES (full) GES (w/o Lω) Gaussian Splatting [27]

Figure 34. Frequency-Modulated Loss Effect. We show the effect of the frequency-modulated image loss Lω on the performance
on novel views synthesis. Note how adding this Lω improves the optimization in areas where large contrast exists or where a smooth
background is rendered.

39

	. Theory Behind Generalized Exponentials
	. Generalized Exponential Function
	. Theoretical Results
	. Numerical Simulation of Gradient-Based 1D Mixtures

	. Genealized Exponential Splatting Details
	. Upper Bound on the Boundary View-Dependant Error in the Approximate GES Rasterization
	. Implementation Details

	. Additional Results and Analysis
	. Additional Results
	. Applying GES in Fast 3D Generation
	. Shape Parameters
	. Analysing the Frequency-Modulated Image Loss
	. Visualizing the Distribution of Parameters
	. Typical Convergence Plots

