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Figure 7. Attention Layer. We additionally investigated Multi-
Head-Attention (MHA) layers to fuse geometry information from
multiple images. As another method of aggregating multi-views,
the Multi-Head self-At, replacing the ®»sv in Fig. 2. Fig. 10
shows qualitative results with using the attention layers for multi-
view aggregation.

7. Additional Results

In the following, we present additional results of our meth-
ods and further comparisons to existing methods, such as
PixeINeRF [56] and BTS. Sec. 7.1 discusses the results of
the attention-based model of the ablation study more exten-
sively. Sec. 7.2 gives more results for our ablation study,
detailing the influence of the different inference setups on
the performance of the multi-view model. Sec. 7.3 presents
more qualitative examples of the occupancy profiles to show
both the benefits of our training setup and the influence of
additional frames. Sec. 7.4 gives additional qualitative re-
sults for the depth prediction task on KITTI [11].

7.1. Using attention layers

In Fig. 10, we show prediction examples coming from
the attention model instead of softmax view-aggregation in
Fig. 2. (See Fig. 7) While the single model seems to pro-
duce reasonable depth and occupancy prediction, adding
more views leads to noisy depth predictions that get worse
with each additional view. A closer inspection of the oc-
cupancy profiles shows that for all inference setups, the at-
tention model casts thin occupancy shadows in the scene,
which seems to degrade the quality of the depth prediction
and the occupancy evaluation.
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Figure 8. Frame Arrangement in temporal steps. The possi-
ble frames are split into either loss set Iy, or render loss set /.
Note that the first frame starting with zero index is used for an
input frame as fixed. Both KITTI-360 and KITTT use stereo cam-
eras. Depending on the experiments’ setup, having fisheyes as
input scenes is optional. This influence has been discussed in the
ablation study of the main paper.

7.2. Occupancy Estimation

Fig. 9 shows the occupancy accuracy for Knowledge-
Distillation Behind the Scenes (KDBTS) and BTS for dif-
ferent depth values. The performance increase of KDBTS
mainly happens at depth values larger than 10 meters.

Tab. 5 to Tab. 9 gives the complete overview of the set-
tings tested in the ablation study of the main paper for five
different camera settings at inference time. The different se-
tups used in these tables are illustrated in Fig. 11. It shows
the general improvement of all models tested in the abla-
tion study when providing more frames at inference time,
except for the model with attention layers. Our model per-
forms best in all settings with a few minor exceptions. We
additionally show the influence of including fisheye cam-
eras at inference time in Tab. 9.

7.3. Occupancy profiles

We present additional visualizations of our models and the
baselines BTS [52] and PixelNeRF [56] in Fig. 13 and
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Figure 9. Occupancy Accuracy At Different Depths. KDBTS
shows on par performance for occupancy estimation to BTS for
depth values (z) smaller than 10 m. For depths larger than 10 m,
KDBTS starts to outperform BTS significantly.

Fig. 14 in the monocular occupancy prediction setting. The
examples show overall improvements in our scene recon-
struction. Our models produce cleaner edges and show a
better holistic scene understanding by reconstructing house
facades as straight lines, removing some of the bulges in
BTS. Apart from the overall improvements of our approach
compared to BTS, they also demonstrate some of the lim-
itations of the static scene assumption taken in our model.
Dynamic objects in the scene can lead to conflicting infor-
mation in the scene reconstruction of our MVBTS model,
which also affects KDBTS. This results in either drawn-
out shadows of dynamic objects (see the first example of
Fig. 13) or our models removing the dynamic object en-
tirely (see the first example of Fig. 14).

7.4. Depth Prediction

We evaluate the depth predictions generated by our mod-
els compared to established baselines such as BTS [52] and
PixelNeRF [56], specifically focusing on monocular input.

Figures 13 and 14 visually present the depth predictions
obtained from our models and the aforementioned base-
lines. Our models demonstrate performance on par with
BTS in terms of overall accuracy. However, a notable dif-
ference lies in the prediction of car windows, where our
models tend to exhibit fewer holes compared to BTS. Con-
versely, our models may show slightly increased blur at the
edges of reconstructed objects.

To further analyze the performance differences, we ex-
amine the error distribution depicted in Fig. 12. While
the majority of errors appear similar between our model
(KDBTS) and BTS, KDBTS tends to exhibit more large er-
rors, indicating the violation of static scene assumption.

In Fig. 15, we provide a qualitative comparison of the
depth predictions generated by KDBTS and BTS. Although
both methods perform comparably overall, KDBTS shows a
tendency to perform worse, particularly in scenarios involv-
ing dynamic objects. This discrepancy is attributed to viola-
tions of the static scene assumption, where the prediction of

moving cars may vanish due to conflicting information from
multiple time steps (as illustrated in Fig. 14). These incon-
sistencies in temporal information impact the reconstruction
quality, affecting both depth and occupancy estimates.

8. Implementation Details

In the following, we detail the implementation details of
our method, including the network architecture and train-
ing hyperparameters. For additional details, such as more
information about the rendering process and the positional
encoding, we refer the reader to [52] and its supplementary
material.

8.1. Network Architecture

For implementation reasons, our network consists of a back-
bone encoder-decoder network and two decoder networks
for both the single-view and multi-view settings, respec-
tively.

Backbone. For the backbone, we follow Mon-
odepth2 [13] and BTS [52] such that the reported results
stem from the different training setups. It is comprised of a
ResNet50 network [19] with an adjustable channel size of
64. As with BTS [52], there is no feature reduction in the
upconvolutions of the network.

Single-View Head. The single-view decoding network
follows [52] exactly and is comprised of a layer-connected
network with ReLLU activation functions and residual con-
nections. The input dimension of the MLP is 103 (64 fea-
ture channel size + 39 positional encoding size) and the net-
work has a hidden dimension of 64.

Multi-View Head. The multi-view decoding network
consists of two MLPs with the same architecture as the
single-view decoding network. MLP;, acting as a feature
reduction network, has an input dimension of 103, a hidden
dimension of 128, and an output size of 17 (1 confidence
value + 16 feature channel size). MLPs has an input dimen-
sion of 16, and a hidden dimension of 16. The softmax layer
in between the MLPs uses no temperature scaling.

Ablation Study Network. For our ablation study, we
also test networks where the MLP dimensions are set to the
following for the large network:

e MLP; (input: 103, hidden: 256, output: 33)

* MLP; (input: 32, hidden: 32, output: 1)

and to

e MLP; (input: 103, hidden: 128, output: 2)

* no MLP,

for the small model. The small network does not do feature
fusion but rather directly fuses the different frames’ density
prediction.

8.2. Training Configuration

Hyperparameters For training on both KITTI [11] and
KITTI-360 [32], we use the same set of hyperparameters.



We use a batch size of 8 during training. We use the
patched-based sampling strategy of [52] and sample 32 ran-
dom patches of size 8 x 8, giving us 2048 rays in total
per batch. The loss weights are set to Agsryr = 0.85,
ALr = 0.15 following [13, 52] and A\gas = 103 following
the code implementation of [52]. We use an ADAM opti-
mizer with a learning rate of A = 10~* for the first 120,000
steps and A = 107° for the rest. We apply the same color
augmentation and random flips as [52]. For our knowl-
edge distillation, we train with a constant learning rate of
A=10"%
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Figure 10. Attention Layer Qualitative Results. Comparison in both depth- and occupancy estimation. The camera frustum is set up
in x=[-9, 9]m, y=[0, 0.75]m, and z=[3,21]m. The monocular occupancy prediction produces reasonable results for both the expected ray
termination depth and the occupancy profiles. Adding more frames to the prediction leads to increased noise in the predictions. A closer
inspection of the occupancy profiles shows that the attention model produces long and thin occupancy shadows along rays cast from the
camera. The occupancy predictions seem to be quite sensitive to changes in the features coming from the pixel-aligned feature map.
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Figure 11. Frame Arrangement in Inference. Illustration of the settings used at inference time in Tab. 5, Tab. 6, Tab. 7, Tab. 8, and Tab. 9.



Inference  dropout ~ MLPs  attn. layers  encode fisheye ‘ Ogee T Oprec T Orec T ‘ IEacc T IEpree T IBrec T

(Mono) 0.5 middle 4 X 93.98% 5741% 80.47% | 7443% 48.40% 44.47%
(Mono) 0.0 middle X 4 93.81% 57.07%  82.60% | 73.03%  50.55%  39.54%
(Mono) 0.2 middle X v 94.37%  59.03% 8091% | 76.24%  51.06%  46.28%
(Mono) 0.5 middle X 4 94.71%  60.31%  83.35% | 77.89%  52.96%  46.02%
(Mono) 0.8 middle X v 94.78%  60.09%  8538% | 77.76%  53.25%  43.43%
(Mono) 0.5 small X X 94.51%  59.62%  85.18% | 76.88%  52.80%  40.80%
(Mono) 0.5 large X X 94.16%  58.56%  80.96% | 76.04%  50.78%  46.69%
(Mono) 0.5 middle X X ‘ 94.76%  60.83%  84.51% ‘ 78.00%  53.69%  44.04%

Table 5. Ablation Studies in Monocular Inference. Evaluation of all models in the ablations study in the monocular setting (see Fig. 11
for more details of the frame arrangements). As for the setting in the main paper, our final architecture performs the best with a few
exceptions. The model with more dropout performs slightly better in the occupancy estimation task. This is likely due to having fewer
frames available during training. Additionally, some of the methods that also encoded fisheye cameras during training as well perform
better when it comes to the IE,... but worse at IE,.... They produce fewer false negatives, but more false positives, meaning less space is
predicted as being empty.

Inference  dropout MLPs attn. layers  encode fisheye ‘ Oace T Oprec T Orec T ‘ IEacc T IEprec T IErec T

(M+T) 0.5 middle v X 93.79%  5897%  77.44% | 72.93% 45.81% 47.91%
(M+T) 0.0 middle X 4 93.69%  57.36%  81.59% | 73.50%  45.66%  41.07%
(M+T) 0.2 middle X 4 94.42%  59.45%  81.76% | 76.45% 51.44%  45.94%
(M+T) 0.5 middle X v 94.78%  60.69%  84.37% | 77.93%  55.32%  45.81%
(M+T) 0.8 middle X 4 9490%  60.42%  86.04% | 79.21%  53.55%  43.73%
(M+T) 0.5 small X X 94.56%  59.95%  8598% | 78.37%  55.30%  42.65%
(M+T) 0.5 large X X 94.30%  59.21%  81.28% | 76.65%  50.74%  47.85%
(M+T) 0.5 middle X X ‘ 94.82%  61.02%  84.83% ‘ 78.73%  53.88%  44.81%

Table 6. Ablation Studies in Temporal Monocular Inference. Using one additional temporal frame shows slight improvements for
all methods, with the exception of the attention layer model (see Fig. 11 for more details of the frame setup). Otherwise, the difference
between the models is similar to the monocular setting. The model with a higher dropout gains additional performance improvements to
our final model.

Inference  dropout ~ MLPs  attn. layers  encode fisheye ‘ Ogee T Oprec T Orec T ‘ IEacc T IEpree T IErec T

®) 0.5 middle v X 93.92%  59.26%  78.57% | 73.34% 45.11% 47.37%
) 0.0 middle X 4 93.41% 5721% 80.23% | 72.40% 46.38%  42.14%
S 0.2 middle X v 94.53%  59.02%  82.04% | 76.65%  53.67%  45.97%
) 0.5 middle X 4 94.87%  60.09%  84.58% | 78.37% 54.75%  45.71%
) 0.8 middle X v 94.89%  60.07%  85.64% | 77.98%  54.12%  43.22%
S) 0.5 small X X 94.56%  59.34%  86.20% | 77.92%  54.36%  42.44%
) 0.5 large X X 94.29%  58.86%  81.83% | 76.15%  50.90%  46.15%
S) 0.5 middle X X ‘ 94.84%  61.12%  85.28% ‘ 78.62%  54.02%  44.05%

Table 7. Ablation Studies in Stereo Inference. Using stereo frame also shows slight improvements for all methods, with the exception of
the attention layer model (see Fig. 11 for more details of the frame setup).



Inference  dropout MLPs attn. layers  encode fisheye ‘ Ogce T Oprec T Orec T ‘ IEqcc T IEprec T IErec T

$S+7) 0.5 middle v X 93.23%  60.77%  70.69% | 69.83%  47.40%  58.94%
(S+7) 0.0 middle X 4 93.44%  56.85%  19.74% | 73.02%  45.54%  43.90%
S+7) 0.2 middle X 4 94.57%  59.85%  83.20% | 77.13%  54.41%  45.64%
S+7) 0.5 middle X 4 94.93%  60.72%  85.47% | 79.05%  55.73%  46.39%
S+7) 0.8 middle X v 94.94%  60.43%  86.40% | 79.41%  55.35%  44.80%
S+7) 0.5 small X X 94.64%  59.64%  86.65% | 78.54%  55.04%  43.70%
S+7) 0.5 large X X 94.38%  59.88%  82.51% | 77.24% 51.66%  46.90%
S+7) 0.5 middle X X ‘ 9491%  61.73%  85.78% ‘ 7947%  55.08%  45.23%

Table 8. Ablation Studies in Temporal Stereo Inference. For convenience, we repeat the findings of the main paper here (see Fig. 11 for
more details of the frame setup).

Inference  dropout  MLPs  attn. layers  encode fisheye ‘ Ogee T Oprec T Orec T ‘ IEacc T IEpree T IErec T

(S+T+F) 0.5 middle 4 X 92.88%  58.51% 71.39% | 69.67% 47.31%  57.28%
(S+T+F) 0.0 middle X 4 93.22%  55.79%  78.58% | 72.36% 44.49%  44.09%
(S+T+F) 0.2 middle X v 94.54%  58.77%  84.05% | 77.19%  55.16%  44.00%
(S+T+F) 0.5 middle X 4 9490%  60.34%  85.31% | 78.84%  56.08%  46.04%
(S+T+F) 0.8 middle X v 9491%  60.23%  86.22% | 79.31%  55.22%  44.50%
(S+T+F) 0.5 small X X 94.67%  59.17%  86.65% | 78.54%  54.97%  43.45%
(S+T+F) 0.5 large X X 94.38%  59.22%  82.68% | 77.08%  51.53%  45.90%
X X

(S+T+F) 0.5 middle ‘ 94.89%  60.38%  85.83% ‘ 79.44%  55.30%  44.90%

Table 9. Ablation Studies in Temporal Stereo Fisheye Inference. Using the fisheye cameras for inference does not give large improve-
ments for all methods. This shows that a lot of the scene information can already be captured in the pinhole frames alone (see Fig. 11 for
more details of the frame setup).
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Figure 12. Depth Prediction Error Distributions. The error distributions are similar for both methods - KDBTS has slightly more large
errors than BTS. Lower errors for KDBTS (blue dots) and BTS (red dots), intensity encodes magnitude. Qualitative examples (see Fig. 15)
for the depth error on the KITTI test set show that KDTBS often performs worse on dynamic objects (e.g. cars, cyclists).
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Figure 13. Qualitative Baseline Results 1. Baselines comparison in both depth- and occupancy estimation. The camera frustum is set up
in x=[-9, 9]m, y=[0, 0.75]m, and z=[3,21]m. It shows general improvements by our methods, such as removing occupancy behind parked

cars, leading to cleaner occupancy predictions (see top right example). The top left shows a failure case of our method where a moving car
produces a drawn-out shadow for our methods, likely resulting from conflicting temporal information.
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Figure 14. Qualitative Baseline Results 2. Baselines comparison in both depth- and occupancy estimation. The camera frustum is set up
in x=[-9, 9]m, y=[0, 0.75]m, and z=[3,21]m. Our method shows general improvements, such as removing holes in car windows (see lower
examples) or predicting the house facades to be in a straight line (see lower right example). It also shows a failure case (top left) where our
methods remove a moving car from the scene, likely due to conflicting temporal information.



Figure 15. Depth error comparison between BTS and KDBTS. KDBTS exhibits slightly more large errors compared to BTS. Qualitative
examples (bottom) demonstrate depth error on the KITTI test set, with lower errors depicted by KDBTS (blue dots) and BTS (red dots),
with intensity representing magnitude. Each test image presents the projected scene from the LiDAR ground truth point cloud. The
projected LiDAR point cloud is used to calculate the distance error between the prediction and its ground truth. Color differentiation
indicates lesser distance errors between KDBTS (blue dots) and BTS (red dots). In KDBTS, the model’s reconstruction is affected by
moving objects, resulting in larger errors typically observed on dynamic objects (e.g., cars, cyclists). Consequently, red dots are depicted
for dynamic objects, signifying lower errors for BTS.
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