A. Optimization on Pretraining Data

A.1. Performance with other choices of pretraining
data.

To optimize GeoPile-2, we initially focused on optimizing
GeoPile-2-RGB. As previous research has indicated, a suc-
cessful pretraining dataset requires rigorous testing of each
component [43]. Thus, we conducted a series of experiments
on each individual dataset. These experiments involved the
use of ImageNet [17] with 3 million images, GeoLifeCLEF
with 3.3 million images, and the Functional Map of the
World (FMoW) [14]. For FMoW, we segmented the dataset
into tiles of size 384, leading to a total of 6 million images.
This diverse selection of datasets allowed us to compre-
hensively test and optimize our pretraining approach for
GeoPile-2.

To ensure other variables, such as the backbone architec-
ture and pretraining methodologies, do not skew our results,
we chose to employ the Swin-base [35] and committed to
pretraining from scratch. In line with our aim for equitable
comparison, we also adhered to the same seven downstream
tasks as delineated in the previous report [39]. The results
are shown in Table 7 and Table 8. This approach creates a
consistent testing environment across all datasets, reducing
the potential for bias or error.

Interestingly, upon integrating the GeoLifeCLEF into
our testing framework, we observed a downturn in perfor-
mance on downstream tasks. This result signifies that not
all datasets necessarily contribute to improved model perfor-
mance, and their selection demands careful consideration.

Even though the addition of both the Functional Map of
the World dataset and ImageNet gave rise to performance
metrics that were commensurate with those achieved by
GeoPile-2-RGB, these new dataset additions were not as
efficient. The key reason for this inefficiency was the sig-
nificantly larger size of the pretraining dataset, which in-
troduced higher computational costs and longer processing
times. This finding highlights the importance of carefully
balancing dataset size and complexity with computational
efficiency in the model training process.

A.2. Performance without RGB modality

RGB modalities are singled out because of the abundance of
RGB datasets that come from various sources beyond just
Sentinel-2. For instance, MillionAID [37], a dataset com-
prised of a wide range of RGB images, is sourced from mul-
tiple satellites, including GeoEye, WorldView, QuickBird,
IKONOS, and SPOT satellites, among others. Additionally,
a previous study [15] found that using only Sentinel-2 data
for pretraining does not yield optimal performance in the
downstream evaluation. Therefore, we sought to diversify
our sources and include a wider range of RGB images in our
pretraining data. This breadth of data sources significantly

enriches the diversity of the RGB modality in our study.

Despite overlapping GSD in some RGB modality, more
geospatial features will be included. Although these datasets
may not provide an imaging spectrum as wide as Sentinel-2,
they enhance the entropy of pre-training data, which has
been proven to be effective in [39], which is demonstrated
by Table 9.

B. Pretraining Details
B.1. Pretraining Settings

Masking. All hyper-parameters are listed in Table 10. We
implement a masking strategy that maintains consistency
around different channels within the same sensor, applying
the mask at the same locations. However, when it comes to
different sensors, we employ a varying masking approach,
ensuring that the mask is applied at different locations. This
methodology allows us to preserve sensor-specific infor-
mation while investigating inter-sensor discrepancies effec-
tively.

Heterogeneous batch size. Given the disparity in the
number of images obtained from different sensors, we em-
ploy a heterogeneous batch size strategy for our training
process. This methodology adjusts the batch size in pro-
portion to the amount of data sourced from each individual
sensor. In essence, during each epoch of our training process,
every type of sensor is iterated through once, irrespective
of the data volume associated with that particular sensor.
This ensures that all sensor types have an equal chance to
contribute to the model’s learning process, fostering a more
balanced and comprehensive training regimen. Alongside
this, we also adjust the learning rate proportionally in accor-
dance with the batch size allocated per sensor.

C. Downstream Experiments
C.1. Model size

Regarding the number of parameters, we followed a standard
backbone for pretraining, the details of which have been
reported in [63]. Comparisons between training from scratch
and using ImageNet pretrained weights have been provided
in Table 11 and corroborated by previous studies [8, 15, 38,
39, 62].

C.2. Experimental settings

There are primarily two ways to leverage pretrained weights,
as depicted in Figure 6. The first approach involves feed-
ing each sensor through encoders that share weights. The
resulting embeddings are then concatenated and fed into
the classifier. In the second approach, all sensor data are
stacked together in the color channel prior to patchification.
This approach resembles the multiMAE method [5], where
the projected patches from all modalities are concatenated



# Image OSCD (F1) DSFIN (F1) BEN 10% BEN 1%

Dataset
GeoPile [39] 600K
GeoPile-2-RGB 1.7M
GeoPile-2-RGB + ImageNet [17] 3M

GeoPile-2-RGB + GeoLifeCLEF 3.3M
GeoPile-2-RGB + FMoW [14] 6M

57.5 66.2 86.4 79.3
57.1 70.4 86.8 79.6
57.5 69.2 86.4 79.5
56.1 61.6 86.1 78.9
58.2 69.3 86.2 79.1

Table 7. Results of downstream tasks with different pretraining datasets: change detection and classification

#Image WHU Vai. SN2 (PSNR) SN2 (SSIM)

Dataset
GeoPile [39] 600K
GeoPile-2-RGB 1.7M
GeoPile-2-RGB + ImageNet [17] 3M

GeoPile-2-RGB + GeoLifeCLEF 3.3M
GeoPile-2-RGB + FMoW [14] 6M

90.1 75.1 22.626 0.645
90.6 75.9 22.599 0.658
90.5 76.1 22.107 0.631
89.1 74 16.663 0.512
90.2 75.7 22.448 0.638

Table 8. Results of downstream tasks with different pretraining datasets: segmentation and super-resolution

Pretraining sensor modality 10% BEN cloud removal

Metric mAP (1) SAM (]))
SAR (in Figure 3) 84.2 8.37 + 0.057
Sentinel-2 (in Figure 3) 86.6 8.33 £0.034
RGB 86.4 10.45 £ 0.12
w/o RGB 86.6 9.67 +0.12
GeoPile-2 87.7 7.51 + 0.057

Table 9. Results pretrained with single modality or without RGB
modality.

into a single sequence. Our experiments on 1% of the BEN
dataset [56], listed in Table 12, demonstrate that both meth-
ods yield comparable results. However, the latter approach
is more computationally efficient, meaning that the former
approach takes longer time to reach the optimal performance
and consumes more memory as well. Therefore, all results
mentioned in the main text utilize this second approach. Im-
portantly, in both cases, no masking is performed during the
transfer phase.

C.3. Visualization

We present some quantitative results of segmentation in Fig-
ure 7 respectively.
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Figure 5. Figure R1: SAR backscatter statistics comparing input
and reconstruction using the MIM. The two bands of SAR are HV
and VV. The mean and standard deviation for the HV band are
shown on the left, while those for the VV band are displayed on the
right. The Speckle Suppression Index (SSI) values are presented
in the right panel. An SSI value closer to one indicates that the
mean and standard deviation remain consistent before and after
reconstruction.




Hyper-parameter

Value

Image size 192 x 192
Optimizer AdamW
& 0.9

Pa 0.999
Eps 1.0x 1078
Momentum 0.9
Weight decay 0.05

Learning rate

{1.0 x 1074, 0.25 x 10~4, 1.0 x 10~5} for RGB,
Sen12MS [52] and MDAS [29]

Warm up learning rate 5.0 x 1077
Weight decay 10-°
Batch size

Sen12MS [52] and MDAS [29]

|
|
|
|
|
|
|
|
|
|
{128, 32, 12} per GPU for RGB,
|
|
|
|
|
|
|
|
|
|
|
|

Training epochs 800 or 100

Warm up epochs 10

Learning rate decay Multistep

Gamma 0.1

Multisteps [700,] for 800 or [] for 100
# Experts 8

MOoE blocks 1,3,5,7,9, 11, 13, 15, 17 (Every other swin block)
Top-value (k) 1

Capacity factor 1.25

Aux loss weight (\) 0.01

Mask patch size 32

Mask ratio 0.6

Table 10. Hyperparameters of msGFM pretraining.

Model

| SeCo | SatMAE | MoCoV2 | DINO-MC | GFM | msGFM |

# of trainable parameters

| 23M | 307M | 23M | 48.6M | 89M | 8IM |

Table 11. Model size

Finetuning Method BEN 1

%

1 80.8
2 80.8

Table 12. Results of BEN when comparing different downstream

transfer methods illustrated in Figure 6
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Figure 6. Two methods of downstream transfer. In the top panel,
every sensor is fed into a separate encoder initialized with msGFM
pretrained weight. The embeddings from the last layer are concate-
nated, and then fed through the prediction head, such as classifier
and segmentation decoder. In lower panel, images are concatenated
along the color channel and then fed through one encoder initialized
with msGFM pretrained weight.
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Figure 7. A display of qualitative results showcasing segmentation
outcomes from msGFM in comparison to other competitive meth-

ods.
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