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A. More Implementation Details
We provide some important implementation details in the
following. The full training code and the data processing
code will be released in the future.

A.1. Camera Calibration

We adopt MetaShape1 to calibrate a shared camera intrinsic
matrix for all the recorded frames and a camera extrinsic
matrix for each frame. We translate and scale the mesh re-
constructed by MetaShape to fit it into the [−1, 1]3 cube;
the camera extrinsic matrices are transformed the same way
as the mesh. In this way, we ensure that a [−1, 1]3 bound-
ing box is enough for the neural field to represent the whole
face. During the data capture process, we set the ISO to
300, the white balance to 4900K, and the FPS to 30.

A.2. Smartphone Flashlight Calibration

Recall that we parameterize the smartphone flashlight as a
point light source with 3-channel intensity L. We further
represent L as the multiplication of a 1-channel scale sL ∈
R and a 3-channel RGB color cL ∈ R3, i.e. L = sL · cL.
We calibrate cL by capturing a smartphone flashlight image
for a pure-white A4 page. We then adopt the mean color of
a select patch on this image as cL. We empirically set sL =
8 and find it works well for all the subjects we captured
following the camera calibration procedure in Section A.1.

A.3. Disney BRDF Implementation

We adopt a modified version of the Disney BRDF fpbr [3],
containing a diffuse term and a specular term. Both terms
are implemented identically to WildLight [4]; see their pa-
per and open-source code for more details.

A.4. Network Architecture

We implement our neural field on top of the multi-resolution
hash grid [16]. The neural SDF field and the neural re-
flectance field are implemented as independent hash grids.
The neural SDF field is initialized to a sphere to stabilize

1https://www.agisoft.com/

training [8]. In addition, we add a small MLP head on the
neural SDF field to predict the view-dependent color.

During training, the photometric loss is computed for
both the predicted one (i.e. the view-dependent color pre-
dicted by the small MLP head) and the physics-based one
(i.e. the shading color computed from the predicted ma-
terial, normal, the co-located flashlight, and the ambient
light). We empirically find this strategy makes the geom-
etry reconstruction more robust.

A.5. Modeling Photographer’s Occlusion in Com-
bined Light Representation

When capturing real-world data, we find the photographer
would occlude the ambient light when he or she holds the
camera moving around the target subject. In an environ-
ment with moderate-level ambient illumination (e.g. noon
w/o curtain and asym. ambient), the photographer’s occlu-
sion becomes more apparent. In this scenario, using only
Klm to represent the ambient shading is inadequate, as the
ambient light is changed as the photographer moves. Thus,
we propose to explicitly model the photographer.

Inspired by Eclipse [26], we assign each training view a
learnable occlusion mask parameterized as 2-order Spheri-
cal Harmonics (SH). Thus, the ambient shading for the i-th
view becomes:

lamb = c ·Oi
amb(n) · SoftPlus(

2∑
l=0

l∑
m=−l

·Klm · Ylm(n))

(1)
Here, Oi

amb(·) is the visibility mask for the i-th view to
compensate for the occlusion caused by the photographer,
parameterized as:

Oi
amb(n) = Sigmoid(

2∑
l=0

l∑
m=−l

·Oi
lm · Ylm(n)) (2)

Here, Oi
lm are the SH coefficients for the occlusion mask

for the i-th view, which are learned together with the Klm.
In this way, we adopt Klm to represent the global ambient
shading and a per-view Oi

lm to represent the photograph’s
occlusion.
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A.6. Losses

We detail all the loss functions we used in the following.
At a specific training iteration, we cast n camera rays to the
3D scene. For the i-th ray, we sample ki points along it
according to the empty space skip strategy proposed by the
Instant-NGP paper [16].

Photometric Terms. We adopt an L1 photometric loss:

LL1 =

n∑
i=1

||Îi − Ii||1 (3)

Here, Îi is the rendered color for the i-th ray while Ii is the
corresponding ground truth.

In addition, we adopt an LPIPS loss Llpips [33] over the
full image to reconstruct richer details.

Both photometric terms are computed in the linear space;
we apply a gamma function to convert the sRGB space into
the linear space and empirically set the gamma value to 2.2.
Although the LPIPS network is trained on images in the
sRGB space, we empirically find it also works well on im-
ages in the linear space.

Mask Loss. We adopt an L1 mask loss:

Lmask =

n∑
i=1

||Ôi −Oi||1 (4)

Here, Ôi is the rendered occupancy for the i-th ray; Oi is
the corresponding pseudo ground truth computed from an
off-the-shelf face parsing network [11].

Eikonal Loss. We add an Eikonal term [8] to the sampled
points to regularize the SDF value predicted by fsdf :

Leikonal =

n∑
i=1

ki∑
j=1

(||∇fsdf (xij)||2 − 1)2 (5)

Normal Smooth Loss. We add a regularization term to
encourage smooth normal by constraining the normal of a
sampled point x to be similar to its nearby point xϵ [22, 34]:

Leps =

n∑
i=1

ki∑
j=1

(1− n(xij) · n(xϵ
ij)) (6)

During training, the nearby points are sampled following
the strategy of PermutoSDF [22].

Input AlbedoMM Ftting Enlarged Ftting

Figure 1. We enlarge the AlbedoMM fitted specular albedo to the
whole image as the pseudo ground truth.

Composition Loss. To constrain the training of our hy-
brid representation, inspired by ObjectSDF++ [30], we ren-
der the occlusion-aware object opacity mask ÔE and ÔS for
the E and S region and compare them to the corresponding
ground truth OE and OS obtained from an off-the-shelf face
parsing network [11] over the n sampled rays:

Lcomp =

n∑
i=1

||ÔE
i −OE

i ||1 +
n∑

i=1

||ÔS
i −OS

i ||1 (7)

Reflectance Regularization. We exploit the morphable
face albedo model – AlbedoMM [23] – as the reflectance
prior. Specifically, we devise a multi-view AlbedoMM fit-
ting algorithm to reconstruct the specular albedo for each
frame. Then, we enlarge the solved specular albedo to the
whole image (see Figure 1) to obtain Is as pseudo ground
truth to supervise the volume-rendered one Îs on the sam-
pled rays:

Lref =

n∑
i=1

||k · Îsi − Isi ||1 (8)

Here, k ∈ R is a learnable scalar to compensate for the scale
ambiguity stemming from our predefined light intensity L.
For pixels from the eyeballs region E, we do not compute
Lref since we already have predefined prior seye. For pixels
from the hair region indicated by the parsing mask [11], we
constrain its specular albedo to be 0 to obtain a diffuse ap-
pearance as we empirically find fitting a specular lobe pro-
duces artifacts when rendered in novel environments.

A.7. Training Schedule

We adopt a two-stage training strategy. In the first stage,
we volume render the neural field to optimize the geometry
and reflectance network, i.e. fsdf and fbrdf , and the shading
coefficients Klm (and the optional Oi

lm) jointly. We set ωL1

to 1, ωmask to 1, ωeikonal to 1, ωeps to 0.5 in the hair region
while 0.02 in other region, ωcomp to 1, and ωref to 0.5.

In the second stage, we extract the mesh from the neu-
ral field and perform surface rendering; we fix the geometry



network fsdf while only optimizing the reflectance network
fbrdf and the shading coefficients Klm (and the optional
Oi

lm) in this stage. Since geometry is fixed, only photo-
metric loss and reflectance regularization are adopted. We
set ωL1 to 1, ωlpips to 0.1, and ωref to 0.01. Note that we
turn down the weight of the statistical prior, i.e. ωref , in
the second stage to encourage the network to recover more
person-specific specular details from the observations.

We train our method by 40000 iterations. The first 30000
iterations are for the first stage and the last 10000 iterations
are for the second stage. We adopt the Adam optimizer
with an initial learning rate of 0.001. The learning rate is
annealed by 0.3 for every 15000 iterations. Our method
can be trained within 70 minutes using a single Nvidia RTX
3090 graphics card. In our experiment, the loss weights are
shared for all the captured sequences.

A.8. Automatic 3D Assets Extraction

For the S region, we extract the 0.001 iso-surface of the
neural SDF field using the Marching Cubes [13] algorithm
as we find the geometry is biased in VolSDF; a similar ob-
servation can be found in BakedSDF [31]. For the E region,
we directly use the sphere meshes as its geometry.

We rasterize the extracted meshes into all the training
views and compare the rendered occupancy mask to the
face parsing mask. For the triangle faces unseen from every
training view, we delete them from the extracted meshes.
Then, we find all the connection areas on the mesh using
an existing tool [6]. We only keep the largest one while
deleting all other connection areas.

We adopt Blender’s UV Unwrap function to create the
UV mapping function for the meshes. Then, we generate a
normal map, diffuse albedo map, specular albedo map, and
roughness map accordingly.

A.9. Relightable Performance Capture

In this Section, we show how we combine our method with
the Reflectance Transfer technique [20] to construct a sim-
ple and powerful baseline for the challenging problem of
relightable facial performance capture in a low-cost setup.

Preliminary of Reflectance Transfer. The core idea of
Reflectance Transfer is to use optical flow to transfer the
lighting effects of a source frame to a target frame. This
way, one can capture a relightable scan for only one facial
expression as the source frame. Then, a new performance
sequence of the same person (or a different person who has
a similar appearance to the source person) can be relit.

Specifically, the relightable scan for the source frame
is the densely sampled light transport function captured
by the Light Stage [7]. The target performance sequence
{Iisrc}ni=1 is captured under a known lighting Lsrc.

To obtain the relit target performance sequence
{Iitgt}ni=1 under a new lighting Ltgt, they first render the
source relightable scan under Lsrc and Ltgt to obtain the
corresponding renderings I0src and I0tgt. The lighting effects
R0 is defined as the ratio image of I0src and I0tgt:

R0 =
I0tgt
I0src

(9)

Then, they warp the lighting effects R0 to a target frame
Iisrc using the warping function computed from I0src and
Iisrc to obtain Ri:

Ri = warp(R0) (10)

Here, warp(·) is the optical flow computed from Iisrc to
I0src; note that the lighting condition of I0src and Iisrc are
the same, which is the key to compute reliable optical flow.

By multiplying the warped light effects Ri with the tar-
get frame Iisrc, a relit frame Iitgt can be obtained:

Iitgt = Ri ⊙ Iisrc (11)

See their paper for other details including refining the
warping function, filtering the ratio image, aligning the head
pose, and the keyframe propagation technique to enhance
temporal consistency. Although the Reflectance Transfer
method is not physically based, it works well for a large
body of low or mid-frequency illuminations as demon-
strated by their paper [20].

Combine Our Method to Reflectance Transfer. Recall
that the Reflectance Transfer method requires a relightable
scan for the source frame, a facial performance sequence
captured under known lighting Lsrc, and a target lighting
Ltgt. Our goal is to construct a low-cost version of the Re-
flectance Transfer to support relightable facial performance
capture in the low-cost setup. To this end, we modify their
method in several aspects.

For its first requirement – the relightable scan for the
source frame, we can directly replace it with our method’s
results. Given the target lighting Ltgt, we can directly ren-
der I0tgt. However, its second requirement, i.e. capturing
the facial performance sequence under known lighting, is
hard to fulfill in the low-cost setup. Thus, we propose to
capture the performance sequence under unknown but low-
frequency lighting and solve it using our relightable scan.

Specifically, we render the source frame under the first
2-order Spherical Harmonics (SH) basis lighting to obtain
{I0i }8i=0. We parameterize the lighting as the linear com-
bination weights {ci}8i=0 of these SH bases. Given a target
frame Iisrc captured under the unknown lighting Lsrc, our
goal is to estimate {ci}8i=0 to minimize the following pho-
tometric loss:

Lpho = ||warp(Î0src)− Iisrc||1 (12)



Here, warp(·) is the optical flow computed from Iisrc to Î0src
using RAFT [25]; Î0src is computed as the linear combina-
tion of {I0i }8i=0 weighted by {ci}8i=0:

Î0src =

8∑
i=0

ci · I0i (13)

In our scenario, RAFT can be seen as a fully differen-
tiable optical flow solver. Thus, the photometric loss func-
tion is fully differentiable w.r.t the unknowns, i.e. {ci}8i=0.
We adopt gradient descent to minimize Lpho. Note that
in each iteration step, Î0src are updated since {ci}8i=0 are
updated. Thus, the warping function also needs to be re-
computed in each iteration.

At the beginning of the optimization, the lighting of Î0src
may be far from Iisrc, which violates the optical flow as-
sumption. However, we empirically find RAFT can also
produce reasonable results in this scenario. During the op-
timization process, we observe that as the lighting of Î0src
becomes closer to Iisrc, the estimated optical flow becomes
more accurate.

So far, we have introduced how to compute I0src and I0tgt.
Thus, we can define the light effect R0 as Equation (9). In
this way, we can directly adopt Reflectance Transfer to re-
light the whole facial performance sequence.

Results. See our supplementary video for the facial per-
formance relighting results.

Limitations and Discussions. Although impressive re-
sults are demonstrated, this baseline method for low-cost
facial performance capture has several limitations.

Similar to the original Reflectance Transfer method, all
the shading effects, e.g. specularities, shadows, are trans-
ferred in the image space via optical flow. Thus, there is
no guarantee that these effects are conform to the geom-
etry. For example, we observe the hard shadow flickered
across the frames when relit under a high-frequency target
illumination due to the unstable optical flow estimation. We
emphasize that facial performance relighting under high-
frequency illuminations is very challenging even has access
to the Light Stage data [14, 19, 32]. When relit under low-
frequency illuminations, we observe it can often produce
plausible results.

Another limitation inherited from the original Re-
flectance Transfer method is that, as there is only one source
frame, in a target frame there may be some regions that can
not find correspondence in the source frame. For exam-
ple, if eyes in the source frame are opened up, a closed-eye
target frame’s relighting effects around eyelids cannot be
found in the source frame; in this case, the eyelids’ lighting
effects are hallucinated via the warping function.

PSNR ↑ SSIM [28] ↑ LPIPS [33] ↓
NextFace++ 17.62 0.7339 0.2727
Wildlight 23.80 0.8205 0.2798

Ours 26.12 0.8808 0.1642

Table 1. Quantitative comparison of our method and several com-
petitors on face reconstruction. The metric is averaged on 5 sub-
jects.

Nevertheless, we believe our solution can serve as a
strong baseline in the field of low-cost facial performance
relighting to motivate future work.

B. More Experiments
B.1. More Evaluations

Hybrid Face Representation and Lcomp. We show more
qualitative evaluations of our hybrid representation and the
composition loss Lcomp in Figure 2 and Figure 3.

Combined Light Representation. In Figure 4, we show
the photo of the three captured environments mentioned in
Section 4.1 (Combined Light Representation) of our main
paper, i.e. night w/ curtain, noon w/ curtain, and noon w/o
curtain. In the following, we present a more thorough eval-
uation of this design choice.

We conduct experiments on a challenging real scene with
asymmetric ambient illumination; we dub it asym. ambient.
In this real scene, a red lamp is placed on the right side of
the face. The photo of this scene and one sampled captured
frame can be found in Figure 4. We explicitly model the oc-
clusion caused by the photographer (see Section A.5) when
testing on this scene. We show the reconstructed shading
component of the ambient and the smartphone flashlight in
Figure 5. We observe that our method can still disentangle
the ambient and flashlight contributions from the captured
images in a plausible way. As shown in Figure 6, we ob-
serve that the baseline variant, i.e. Ours w/o lamb, bakes the
red ambient light into the diffuse albedo while our method
can obtain a cleaner one.

Reflectance Regularization. We show more qualitative
evaluations of our reflectance regularization Lref in Fig-
ure 7.

B.2. More Comparisons

Comparison to WildLight. We compare our method to
WildLight [4], a state-of-the-art inverse rendering method
for generic objects that takes two co-located smartphone
flashlight sequences as input, one with the flashlight opened
and the other closed. In WildLight, they learn a NeRF [15]
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Figure 2. More qualitative evaluation of the hybrid representation and Lcomp on geometry reconstruction around eyes. The close-up
rendered texture and normal are shown in the second and third rows respectively.

holistic rep. holistic rep. 
w/ naive ref. prior

Ours holistic rep. holistic rep. 
w/ naive ref. prior

Ours

Figure 3. More qualitative evaluation of our hybrid representation and the baseline variants on relighting.

(a) night w/ curtain (b) noon w/ curtain  

(c) noon w/o curtain  (d) asym. ambient  

Figure 4. The photo of the scenes we conducted experiments on
and the corresponding example images captured in the scene. Note
that asym. ambient is only referenced in the supplementary mate-
rial while the other three scenes are mentioned in the main paper.

to model the ambient shading and directly use the flashlight-
closed sequence to supervise it. Compared to WildLight,
our method only needs a single flashlight-opened sequence
for training as our combined light representation is more
compact. In addition, WildLight cannot model the indi-
rect illumination brought by the smartphone flashlight as
their ambient shading NeRF is supervised by the flashlight-
closed images.

We first conduct experiments on the data captured in the
room at night, i.e. night w/ curtain. As shown in Figure 4,
in this scenario the images are totally black if the flashlight
is closed2. Thus, we turn off the ambient shading NeRF
in WildLight. We compare the reconstructed geometry and
reflectance in Figure 8. Our method obtains superior re-

2In this case, the task of the ambient shading term lamb in our com-
bined light representation is to model the indirect illumination caused by
the smartphone flashlight.
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Figure 5. The reconstructed shading contribution of the ambient
and the smartphone flashlight on two viewpoints. This experiment
is conducted on the data captured in asym. ambient.

OursOurs w/o lambWildLight

Figure 6. Comparison on diffuse albedo reconstruction of Wild-
Light, our method, and the baseline variant. This experiment is
conducted on the data captured in asym. ambient.

sults over WildLight since (1) we naturally integrate facial
geometry and reflectance priors into our method, leading
to better eyeball reconstruction and reflectance estimation,
and (2) other design choices of our method, e.g. the view-
dependent color head and the two-stage training strategy,
make it more robust on real-world data and produce more
detailed textures. In Table 1, we present quantitative re-
sults on face reconstruction; to ensure a fair comparison, all
the metrics are computed on the mesh renderings. Not sur-
prisingly, our method obtains better results than WildLight
again. We also copy the NextFace++’s results from the main
paper for reference.

We then conduct experiments on the data captured in the
challenging asym. ambient (see the photo of this scene in
Figure 4). We turn on the ambient shading NeRF in Wild-
Light. We use the same data as our method to train Wild-
Light, i.e. a single co-located sequence with the flashlight
opened. As shown in Figure 6, without direct supervision
on the ambient shading NeRF, WildLight cannot disentan-
gle the ambient illumination and the smartphone flashlight
from the captured images in a plausible way, leading to
an unreasonable diffuse albedo. Our method obtains bet-
ter results as our combined light representation is compact

enough to disentangle the ambient and flashlight contribu-
tions solely from the captured data.

Comparison to NeRO Some methods [9, 12, 17, 34] in
inverse rendering take multi-view images of an object as in-
put; from these images, they estimate the environment light-
ing and the object’s geometry and reflectance. Compared
to our method, these works have an even more easy-to-use
capture setup for daily users; it neither requires the ambi-
ent illumination to be low frequency nor needs the flash-
light to be opened up during capture. Among these works,
NeRO [12] is the state-of-the-art. In this part, we compare
our method to NeRO to see whether our setup is necessary
to reconstruct high-quality facial geometry and appearance.

We capture two videos for the same identity, one in our
capture setup (i.e. co-located smartphone flashlight video
captured around the subject in a dim room) and the other
following NeRO’s capture setup (i.e. smartphone video cap-
tured around the subject in an unconstrained environment).
Some recorded data for training NeRO is shown in Figure 9.
The comparison results are shown in Figure 10.

On diffuse albedo reconstruction, NeRO bakes shadow
in the diffuse albedo as it is very challenging to simulate
the global light transport to model shadow in the inverse
rendering process. Our method obtains a cleaner one as in
our capture setup the recorded images are almost shadow-
free. On geometry reconstruction, our method obtains bet-
ter results again since our setup makes the inverse rendering
problem easier compared to NeRO as we have prior knowl-
edge on lighting, i.e. the combination of a low-frequency
ambient and a high-frequency flashlight. On face relighting,
our method demonstrates better results for two reasons: (1)
our method can estimate more accurate geometry and re-
flectance, and (2) our hybrid face representation can better
model the eyes than using a single neural SDF to represent
the whole face.

Discussion of Other Related Works NeuFace [35] is a
recent method proposed to reconstruct geometry and neu-
ral BRDF from multi-view images of a subject captured in
a studio with the synchronized multi-camera system. We
do not compare it as our goal is to reconstruct high-quality
relightable 3D face assets compatible with common graph-
ics software under a low-cost and easy-to-use capture setup.
However, NeuFace’s neural BRDF representation and the
corresponding customized shader cannot achieve our goal.

A concurrent work [21] proposes a method for facial in-
verse rendering from smartphone-captured multi-view im-
ages captured in arbitrary unknown lighting. However, sim-
ilar to PolFace [1] and SunStage [27], they only focus on
facial skin capture, while our method proposes a hybrid
face representation that can efficiently represent the com-
plete face with skin, mouth interior, hair, and eyes.
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Figure 7. More qualitative evaluation of our reflectance regularization loss Lref and the baseline variants on diffuse (the first row) and
specular (the second row) albedo estimation.

WildLight WildLight OursOurs

Figure 8. Qualitative comparison of WildLight [4] and our method
on diffuse albedo reconstruction (the first row), specular albedo
reconstruction (the second row), and geometry reconstruction (the
last row).

C. Limitations, Discussions, and Future Works

Although our method demonstrates high-quality facial ge-
ometry and appearance capture results under a low-cost and
easy-to-use setup, it still has some limitations.

Similar to EyeNeRF [10], the position and radius of the
eyeball meshes are manually set in our method, which in-

Figure 9. Example multi-view images to train NeRO. These im-
ages are captured in an uncontrolled indoor environment.

curs some manual effort to the whole pipeline. We have
tried to optimize the eyeballs’ position and radius in the
training process in our preliminary experiment. However,
we find the results are not always plausible since the gaze
direction is the same across the captured frames, which can-
not provide enough cues to solve accurate eyeballs. In fu-
ture work, we plan to capture a sequence of multi-gaze data
before the face capture process to solve the position and ra-
dius of the eyeball automatically [29].

Although plausible results are obtained, the geometry
and reflectance model of the eyeball are still not very ac-
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Figure 10. Qualitative comparison of NeRO (the first row) and
our method (the second row) on geometry reconstruction, diffuse
albedo reconstruction, and relighting results.

curate. In the previous work on high-quality eyeball cap-
ture [2], a more complex model was designed for eyeballs.
In fact, our hybrid representation makes no assumption on
the eyeballs’ mesh; to support other eyeball geometry we
only need to modify the way to convert the meshes to the
SDF field. We chose the sphere meshes because it is easy
to use by daily users while the more complex and accurate
one [2] is not publicly available. Replacing the sphere eye-
ball model with this more complex and accurate one in our
method to enhance the realism of eye rendering is an inter-
esting direction.

We observe artifacts in the close-up view of the recon-
structed eyeballs and/or other face regions’ diffuse albedo.
We attribute this to the following reasons: (1) our data
capture setup requires around 25 seconds to record the se-
quence for a subject, some face parts (e.g. the eyelids, the
lips, and the tongue) would move inevitably during the cap-
ture although we manually remove some frames with ap-
parent movement like eyes blinking, (2) our method re-
lies on off-the-shelf methods to provide segmentation mask
and camera calibrations, which are not perfect, and (3) our
method does not model eyelashes so they are often baked
in the eyeballs’ diffuse albedo. However, we find such arti-
facts are often imperceptible in the whole face’s scale.

We assume the hair is a diffuse surface currently. We
believe using a more accurate reflectance model [5] to rep-
resent hair is a very interesting future work. However, it
is quite challenging in the low-cost setup since we do not
have enough cues to reconstruct accurate hair geometry and
reflectance [24]. Our method produces artifacts when rep-

Captured Frames  Rendered Textures  

Figure 11. Our method cannot reconstruct plausible flying hairs.

resenting flying hairs as shown in Figure 11. We emphasize
that it is a very challenging problem even in studio-based
hair reconstruction methods [18, 24].
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