Supplementary Material

Algorithm 1 The training pipeline of our L2ZRM.

Input: The training dataset D with PMPs, cross-modal retrieval model ( f,, ft, g), self-supervised learning cost function f,,
partial transport parameter p, Sinkhorn regularization parameter .

Warm up the model ( f,, f;, g) using LMONCE 1 £RCE
for e = 1 : num_epochs do
// identifying mismatched pairs

for n = 1 : num_steps do

Reconstruct the visual-text pairs D’

// rematching mismatched pairs

Output: Retrieval model (f,, f:, ).

W = {w;}Y| + BetaMixtureModel (D, (fy, ft,9))
D,, ={(V;,T3) | w; <0.5,Y(V;,T;) € D}, Dm ={(V;, T;) | w; > 0.5,¥(V;, T;) € D}

// update the learnable cost function

Sample a batched samples and get the corresponding matching matrix (V, T, wS'P)
Train the cost function f. on (V, T, w*"?) by minimizing Lot

Sample a batched samples B = {(V;, T;)}*, from the mismatched subset D
Compute the refined alignment 7 in the batch by optimizing the partial OT problem
// update the cross-modal retrieval model

Sample a batched samples B,,, = {(V;, T;)}.**, from the matched subset D,

Train the retrieval model (f,, f, g) on (B,,, B ) by minimizing £Fina!

A. Limitations

Our work still has certain limitations, including (1) This
work only explores the PMP problem among visual and
textual modalities. Further research is needed to confirm
the applicability of L2RM in other cross-modal domains
against PMPs, e.g., re-identification [9], video temporal
learning [8], and graph matching [7]. (2) The effectiveness
of our rematched method is limited by the batch size. When
using smaller batch sizes, the likelihood of observing se-
mantic relevant pairs will decrease. One possible improve-
ment is to maintain a queue to compare more data. We also
provide experimental analysis (see D.2 for details) to show
the impact of batch size.

B. Fast Solver for Refined Alignment

In this section, we detail the fast approximation for com-
puting the refined alignment. We will first introduce how
to transform the original partial OT problem into a standard
OT problem. Then, we will describe the solution by adopt-
ing the efficient Sinkhorn-Knopp algorithm.

Transform partial OT to OT-like problem. Recall that
our partial OT problem seeks only p-unit mass of p =
>ty pid(x;) and g = 77, ¢;0(y;) is matched. To solve
the exact partial OT problem, Chapel ef al. [1] propose an
ingenious method that transforms the original partial OT
problem into an OT-like problem. Specifically, consider two

virtual samples z,,+; and y,4+; are added to the original
variables X and Y, respectively. Intuitively, to ensure p-
unit mass is transported between {z;}{"; and {y;}7_;, we
should constrain the transport mass from {z;}7" t0 Y41
to [|p[|1 — p and the transport mass from {y; }*_; to ,,+1 to
llg|l — p- Thus, the original partial OT problem from X =
{zi}j% oY = {y;}]_; canbe transformed into a standard

OT problem from X = {z;}" 1 to ¥ = {y; ;’i 1, where

the corresponding probability measures are extended to p =
p",llglli —p]" and ¢ = [g", [[plly — p]", respectively.
Following [ 1], the original cost matrix C'is extended to C €

Rm+1><n+1:
~ c f]]-n
o-lay wva] 0

where A > max(Cj;) and { > 0. Note that our original
partial OT problem restricts the transport among the false
positive pairs by imposing a mask matrix, which is extended
by:
- M 1,
M = []1;72 1} . 2)
Based on these, computing the optimal transport plan in par-
tial OT boils down to solve the following problem:
min (M o #,C)p
#*Ell(p,q; M)
st I(p, ¢ M) = {& e RV (M © 7)1, = p,
(M o#) 1, =g}
3)



Algorithm 2 Solving Eq.(3) with Sinkhorn algorithm.

Input: Distribution p and ¢, cost matrix C, mask matrix
M, partial transport mass p, Sinkhorn regulariza-
tion parameter A\, max iterations ¢,

Initialize K = M @ e, b+ 1,41,it < 0

// Run Sinkhorn iterations

while it < it,,4, and a, b not convergence do

a klb // element-wise division

b+ 4

KTa

// Get the approximate solution
# = diag(a)Kdiag(b)
Output: Refined alignment # = (M © #)[1 : m, 1 : n].

Eq.(3) is a standard OT problem and our objective @ =
(Mo #)1:m,1:n].

Solving OT with Sinkhorn algorithm. Exactly solving
the OT problem with linear programming algorithms re-
quires high computational overhead. To resolve Eq.(3) ef-
ficiently, we resort to the entropy-regularized OT problem
by adding a entropic constraint —\H (M ® #), which en-
ables the transport plan to be computed by the lightspeed
Sinkhorn-Knopp algorithm [2]. Note that Gu et al. [4] show
that the Sinkhorn’s algorithm can be applied to solve the
transport plan with mask operation. The detailed solution is
presented in Algorithm. 2. We can see that the Sinkhorn’s
iteration only contains matrix multiplication and exponen-
tial operations, which can be computed efficiently.

C. Training Pipeline

In this section, we summarize our detailed training
pipeline in Algorithm. 1. The code of L2RM is available
athttps://github.com/hhcl1997/L2RM.

D. Additional Experiments
D.1. Implementation Details

Input preprocessing. Our experiments used the same in-
put preprocessing as in the evaluation of NCR [0]. Specif-
ically, all raw images are processed into the top 36 region
proposals by the Faster-RCNN, where each is encoded as a
2048-dimensional feature.

Backbone architecture. L2RM is a general framework
which could endow almost all existing cross-modal retrieval
methods robust against PMPs. Same as previous robust
methods [5,6, 10, 1 1], we implement L2RM based on SGR,
SAF, and SGRAF [3]. Specifically, the image regions and
captions are projected into a common representation space

by a full-connected network (i.e.,f,) and a Bi-GRU model
((i.e.,ft)), respectively. To calculate the cross-modal sim-
ilarities, the similarity function g is based on the Similar-
ity Graph Reasoning (SGR), Similarity Attention Filtration
(SAF), or the combination of SGR and SAF.

Epochs Flickr30K|MS-COCO|CC152K
warm up 5 10 10
training 35 20 40
total 40 30 50
update learning rate 15 10 20

Table 1. The epoch settings for training on three datasets.

Hyperparameters. We follow the same training setting
as NCR where applicable. Specifically, the word embed-
ding size is 300 and the common space size is 1024. The
retrieval model is trained by a Adam optimizer (default set-
tings) with a learning rate of 2 x 10~* and a batch size
of 128. The epoch setting for training is shown in Tab. 1.
The learning rate will be decayed by 0.1 when the training
achieves the update epoch. The margin « used in triplet loss
is fixed as 0.2 for all experiments.

For hyperparameters specific to L2ZRM, we set the tem-
perature parameter 7 as 0.05. We train our learnable cost
function using the Adam optimizer with the default settings
and a learning rate of 2 x 1076, To solve the OT problem,
we fix the partial transport mass p = 0.1 for all experi-
ments. Note that for the experiments conducted on origi-
nal datasets (0 MRate), we empirically find that disabling
the positives masked strategy could achieve superior per-
formance. In addition, we set the Sinkhorn regularization
parameter A as 0.01, 0.07, and 0.07 for Flickr30K, MS-
COCO, and CC152K, respectively.

D.2. More Comparisons Results

Results under Synthesized PMPs. Tab. 2 shows the full
comparison results on Flickr30K and MS-COCO under dif-
ferent mismatching rates. From the results, one could see
that the existence of PMPs remarkably impair the perfor-
mance of general cross-modal retrieval methods (i.e., IM-
RAM, SAF, and SGR). With the mismatching rates increas-
ing, their retrieval performance will degrade fast. Compared
with the robust methods, we can find that our L2RM con-
sistently outperforms them under different variants.

Results on well-annotated Datasets. The Flickr30K and
MS-COCO are two well-annotated datasets (almost O
MRate), thus we conduct comparison experiments on the
original Flickr30K and MS-COCO to show L2RM’s per-
formance under well-matched pairs. The experimental re-
sults are reported in Tab. 3. From the results, one could
observe that L2RM can boost the retrieval performance of


https://github.com/hhc1997/L2RM

Flickr30K MS-COCO

MRate | Method Image-to-Text Text-to-Image S Image-to-Text Text-to-Image S
R@I R@5 R@I0 |R@I R@5 R@io| ™™ [R@I R@5 R@I0 | R@I R@5 R@Io|™>"™
IMRAM 501 854 019 | 445 714 794 |431.7] 699 936 974 | 559 844 89.6 | 4908
SAF 628 887 939 | 497 736 780 |4467| 715 940 975 | 578 864 919 |499.1
SGR 559 815 889 | 402 668 753 |408.6| 257 588 751 | 235 589 751 |317.1
NCR 735 932 966 | 569 824 885 |491.1| 766 956 982 | 60.8 88.8 950 |515.0
BiCro 747 943 968 | 56.6 814 882 |4920| 766 954 982 | 61.3 888 948 |515.1
DECL-SAF 734 920 964 | 53.6 79.7 864 |4815| 744 953 982 | 59.8 883 948 |510.8
0o | DECL-SGR 745 929 971 | 536 795 868 |4844| 756 951 983 | 599 883 947 |511.9
. DECL-SGRAF | 775 938 970 | 56.1 81.8 885 [4947| 775 959 984 | 61.7 893 954 |5182
RCL-SAF 720 917 958 | 536 799 867 |4797| 77.1 955 982 | 61.0 888 946 |5152
RCL-SGR 742 918 969 | 556 812 875 4872|770 955 98.1 | 613 888 948 |5155
RCL-SGRAF | 759 945 973 | 579 826 886 |4968| 789 960 984 | 628 899 954 |521.4
L2RM-SAF 737 943 977 | 568 81.8 88.1 |4924| 779 960 983 | 62.1 892 949 |5184
L2RM-SGR 76,5 937 973 | 555 815 88.0 |4925| 784 957 983 | 62.1 89.1 949 |5185
L2RM-SGRAF | 779 952 978 | 59.8 83.6 89.5 [503.8| 80.2 963 985 | 642 90.1 954 |524.7
IMRAM 449 732 826 | 31.6 563 656 |3542| 518 824 909 | 384 703 789 |412.7
SAF 74 196 267 | 44 120 170 | 87.1 | 135 438 482 | 160 39.0 50.8 |211.3

SGR 41 166 241 | 41 132 197 | 818 | 13 37 63 | 05 25 41 | 184
NCR 68.1 89.6 948 | 514 784 848 |467.1| 747 946 980 | 596 88.1 947 |509.7
BiCro 707 920 955 | 519 777 854 |4732]752 953 981 | 60.0 87.8 943 |510.7
DECL-SAF 70.1 90.6 944 | 497 766 84.1 | 4655|733 946 98.1 | 579 872 941 |505.2
04 | DECL-SGR 69.0 902 948 | 507 763 84.1 |465.1|73.6 946 979 | 57.8 869 939 |504.7
. DECL-SGRAF | 72.7 923 954 | 534 794 864 |479.6| 756 955 983 | 59.5 883 948 |512.0
RCL-SAF 68.8 89.8 950 | 51.0 767 848 |466.1 | 748 948 978 | 59.0 87.1 939 |5074
RCL-SGR 713 91.1 953 | 514 780 852 |4723| 739 949 979 | 590 874 939 |507.0
RCL-SGRAF | 727 927 96.1 | 548 800 87.1 |4834|77.0 955 983 | 612 885 948 |[5153
L2RM-SAF 721 921  96.1 | 527 788 859 |477.7| 744 947 983 | 592 879 944 |508.9
L2RM-SGR 731 924 963 | 523 794 863 | 4798 | 752 948 98.1 | 59.4 878 94.1 |509.4
L2RM-SGRAF | 758 932 969 | 56.3 81.0 87.3 [490.5| 775 958 984 | 620 89.1 949 |517.7
IMRAM 164 382 509 | 75 192 253 | 1575 182 516 680 | 179 436 54.6 |2539
SAF 01 15 28 |04 12 23 83 | 01 05 07 | 08 35 63 | 119
SGR 15 66 96 |03 23 42 |245] 01 06 10 | 01 05 L1 3.4
NCR 139 377 505 | 110 301 414 |1846| 01 03 04 | 01 05 10 | 24
BiCro 64.1 87.1 927 | 472 740 823 |4474| 732 939 976 | 575 863 934 |501.9
DECL-SAF 566 825 897 | 404 666 766 |4124| 686 929 974 | 541 849 927 |490.6
06 | DECL-SGR 645 858 926 | 440 71.6 80.6 |439.1| 697 934 975 | 545 852 926 |492.9
. DECL-SGRAF | 652 884 940 | 468 740 822 |4506| 73.0 942 979 | 570 866 93.8 |502.5
RCL-SAF 639 848 917 |43.0 712 794 |4340|70.1 93.1 968 | 545 844 919 |490.8
RCL-SGR 623 863 929 | 451 713 802 [438.1| 714 932 971 | 554 847 923 |494.1
RCL-SGRAF | 67.7 89.1 936 | 480 749 833 |4566| 740 943 975 | 576 864 935 |503.3
L2RM-SAF 66.1 888 938 | 478 742 822 4529|712 934 975 | 565 859 93.0 |497.5
L2RM-SGR 65.1 878 936 |47.0 735 815 | 4485|727 939 975 | 569 862 933 |500.5
L2RM-SGRAF | 70.0 90.8 954 | 51.3 764 837 |467.6| 754 947 979 | 592 874 938 |508.4
IMRAM 31 97 52 | 03 09 19 |21 | 13 50 83 | 02 06 13 | 167
SAF 00 08 12 | 01 05 1.1 37 1 02 08 14 | 01 05 1.0 | 40
SGR 02 03 05 |01 06 10 | 27 |02 06 10 |01 05 10 | 34
NCR 15 62 99 |03 10 21 [210]/01 03 04 |01 05 10 | 24
BiCro 23 92 172 | 26 102 168 | 583 | 622 886 946 | 474 792 885 |460.5
DECL-SAF 469 737 830 | 321 590 694 |364.1| 593 879 948 | 463 79.1 889 | 4563
0g | DECL-SGR 444 726 820 | 339 595 69.0 |361.4| 600 887 945 | 459 78.8 883 |456.2
: DECL-SGRAF | 534 788 869 | 376 63.8 739 [3944| 648 905 960 | 497 817 903 |473.0
RCL-SAF 450 728 80.8 | 30.7 565 673 [353.1| 629 893 949 | 47.1 779 874 |4595
RCL-SGR 471 705 794 | 303 56.1 663 |349.7| 632 893 952 | 476 787 88.0 |462.0
RCL-SGRAF | 51.7 758 844 | 345 612 707 [3783| 674 908 960 | 506 810 90.1 |4759
L2RM-SAF 508 779 855 | 356 626 727 3851|647 908 958 | 500 809 89.4 |471.6
L2RM-SGR 505 772 839 | 342 61.1 716 |3785|652 903 96.1 | 498 810 882 |470.6
L2RM-SGRAF | 557 80.8 87.8 | 394 654 749 |[404.0| 69.0 919 964 | 526 824 90.3 | 482.6

Table 2. Image-text retrieval performance under different mismatching rates (MRate) on Flickr30K and MS-COCO.

existing methods, i.e., SAF, SGR, and SGRAF, even though dataset cannot be absolutely well-matched; it still contains
it is proposed to improve robustness. On the one hand, the a few mismatched pairs. On the other hand, our rematching



Flickr30K MS-COCO

Method Image-to-Text Text-to-Image S Image-to-Text Text-to-Image S

R@I R@5 R@I0|R@I R@5 R@I10| ™" [R@T R@5 R@I0|R@I R@5 R@I0| ™™
IMRAM 68.8 91.6 960 |53.0 790 87.1 |4755| 740 956 084 | 60.6 889 046 [512.1
SAF 737 933 963 |56.1 81.5 88.0 |4889|76.1 954 983 |61.8 894 953 |5163
SGR 752 933 966 | 562 81.0 865 (4888|780 958 982 | 614 893 954 [518.1
SGRAF 778 94.1 974 |585 83.0 888 |499.6|79.6 962 985 | 632 90.7 96.1 |524.3
NCR 773 940 975 |59.6 844 899 |502.7|78.7 958 985 |63.3 904 958 |522.5
BiCro 795 942 974 | 594 83.6 89.8 |503.9|784 956 985 |62.6 89.7 957 |5205
DECL-SGRAF | 78.9 947 97.4 |593 84.1 89.8 (5042|793 96.5 987 | 633 90.6 950 |523.4
RCL-SAF 767 937 973 | 562 826 88.8 (4953|785 96.1 986 | 627 90.0 954 |5213
RCL-SGR 775 947 974 | 588 833 889 |500.6|782 962 984 | 629 90.0 957 |521.4
RCL-SGRAF | 799 961 978 |61.1 854 90.3 [510.6| 804 96.4 987 | 643 90.8 96.0 |526.6
L2RM-SAF 77.1 932 967 | 575 824 878 (4947|782 957 98.6 | 634 89.6 95.1 |520.6
L2RM-SGR | 79.1 94.1 97.7 |58.1 83.6 889 [501.5|79.0 96.4 983 |63.7 902 958 |523.4
L2RM-SGRAF | 79.6 959 98.4 | 60.7 84.8 89.0 |508.4| 80.5 96.6 989 | 657 90.8 96.1 |528.6

Table 3. Image-text retrieval performance on original Flickr30K and MS-COCO datasets.

strategy augments more positive pairs to a certain extent by
comparing unpaired samples, which could enhance the gen-
eralization of the model.

Results on MS-COCO 5K Datasets. Tab. 4 shows the
quantitative results on MS-COCO with full 5K test images.
From the results, we could observe that co-trained models
offer bigger gains when the test data becomes complex.

Image-to-Text Text-to-Image

MRate | Method R@T K@3 R@I0|R@T R@5 R@T0|™S"™
L2RM-SAF 56.6 833 909 [40.1 69.5 80.0 {4204

0.2 |L2RM-SGR 56.6 83.4 90.6 |40.6 69.5 80.0 [420.7
L2RM-SGRAF| 59.6 85.1 92.0 [42.5 71.5 81.3 |432.0
L2RM-SAF 53.1 81.6 89.8 |38.4 67.5 782 [408.6

0.4 |L2RM-SGR 53.5 81.0 89.5 |38.0 669 77.7 |406.6
L2RM-SGRAF| 57.1 834 91.0 | 40.8 69.4 79.7 |4214
L2RM-SAF 51.0 784 86.8 |349 63.1 74.7 |388.9

0.6 |L2RM-SGR 50.2 79.0 87.8 |34.5 63.0 74.6 [389.1
L2RM-SGRAF| 53.5 81.0 889 |37.3 657 76.7 |403.1
L2RM-SAF 40.7 712 809 |28.2 558 68.0 [344.8

0.8 |L2RM-SGR 426 71.5 81.7 |28.8 55.7 67.3 |347.6
L2RM-SGRAF | 457 744 839 |30.9 58.5 69.8 |363.2

Table 4. Performance under different MRates on MS-COCO 5K.

Impact of Batch Size. To study the influence of different
batch sizes for our method, we conducted the ablation study
on Flickr30K with 0.6 MRate. Note that our method can
flexibly adapt to different batch sizes by adjusting the trans-
port mass p, and we set p to 0.05, 0.1, and 0.2 for the batch
size 64, 128, and 256, respectively. From Tab. 5, one could
observe that our method still achieves superior results with a
small batch size, i.e., 64, and even surpasses the second-best
baseline RCL-SGRAF (in terms of the rSum metric) using
a 128 batch size. We could also see that our L2RM can gain

Image-to-Text Text-to-Image
Batch | Method R@1 gR@s R@I0O|R@1 R@5 Rg@IO rSum
L2RM-SAF | 635 864 932 |458 73.0 814 |4433
L2RM-SGR | 629 874 927 |46.1 72.8 81.3 |4432
64 |RCL-SGRAF | 669 883 94.1 | 483 753 82.5 |455.4
L2RM-SGRAF| 67.2 89.4 94.2 |49.2 753 83.4 |458.7
L2RM-SAF | 66.1 88.8 93.8 |[47.8 742 822 |4529
L2RM-SGR | 65.1 87.8 93.6 |47.0 73.5 815 |4485
128 |RCL-SGRAF |67.7 89.1 93.6 |48.0 749 83.3 |456.6
L2RM-SGRAF| 70.0 90.8 954 |51.3 76.4 83.7 |467.6
L2RM-SAF | 66.7 89.0 93.5 |48.0 742 82.1 |4535
L2RM-SGR | 66.0 88.5 942 |482 739 82.2 |453.0
256 |RCL-SGRAF |66.4 889 94.0 [47.0 733 813 |450.9
L2RM-SGRAF| 69.7 914 95.6 |51.6 77.1 83.6 |469.0

Table 5. Performance with different batch sizes on Flickr30K.

from a larger batch size, i.e., 256, while some methods may
suffer a performance drop.

D.3. Analysis on Refined Alignment

Our refined alignment is derived from a partial OT prob-
lem, which only allows p unit mass to be transported. We
further analyze how the transported and untransported data
can benefit robust cross-modal retrieval. In Fig. 1, we plot
the distribution of averaged refined alignments (image to
caption) for both transported and untransported data drawn
from each batch of the MS-COCO training set. The normal-
ized distribution is ranked in descending order of probabil-
ity. The upper subplot shows that the probability of trans-
port data tends to concentrate on one dominant target. It
is in line with our expectations that L2ZRM captures the se-
mantic similarity among some unpaired samples. Interest-
ingly, for those untransported data, the down subplot shows
that the distribution of averaged refined alignments approx-
imates a uniform distribution. Such refined alignments are
formally equivalent to the label smoothing strategy, wherein
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Figure 1. The averaged ranked distribution of normalized refined alignments (image to caption) about transported (upper subplot) and

untransported (down subplot) data on MS-COCO under 0.4 PMPs.

the original one-hot targets are mixed with uniform target
vectors, i.e.,

¥ =1 -y + (In, — yi)s 4

5
Np—1
where ~ is a smoothing parameter. As the original targets
provide incorrect supervision for those mismatched pairs,
increasing the value of v as much as possible can allevi-
ate the impact of the wrong matching relation. Our refined
alignments accord with this rule, which reveals that the un-
transported data can also improve the robustness against
mismatched pairs.
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