
Supplementary Material
Algorithm 1 The training pipeline of our L2RM.
Input: The training datasetD with PMPs, cross-modal retrieval model (fv, ft, g), self-supervised learning cost function fc,

partial transport parameter ρ, Sinkhorn regularization parameter λ.
Warm up the model (fv, ft, g) using LInfoNCE + LRCE

for e = 1 : num_epochs do
// identifying mismatched pairs
W = {wi}Ni=1 ← BetaMixtureModel (D, (fv, ft, g))
Dm = {(Vi, Ti) | wi ≤ 0.5,∀(Vi, Ti) ∈ D}, Dm̃ = {(Vi, Ti) | wi > 0.5,∀(Vi, Ti) ∈ D}
for n = 1 : num_steps do

// update the learnable cost function
Reconstruct the visual-text pairsD′

Sample a batched samples and get the corresponding matching matrix (V ,T ,πsup)
Train the cost function fc on (V ,T ,πsup) by minimizing LOT

// rematching mismatched pairs

Sample a batched samples Bm̃ = {(Vi, Ti)}Nb
i=1 from the mismatched subsetDm̃

Compute the refined alignment π̃ in the batch by optimizing the partial OT problem
// update the cross-modal retrieval model

Sample a batched samples Bm = {(Vi, Ti)}Nb
i=1 from the matched subsetDm

Train the retrieval model (fv, ft, g) on (Bm,Bm̃) by minimizing LFinal

Output: Retrieval model (fv, ft, g).

A. Limitations

Our work still has certain limitations, including (1) This
work only explores the PMP problem among visual and
textual modalities. Further research is needed to confirm
the applicability of L2RM in other cross-modal domains
against PMPs, e.g., re-identification [9], video temporal
learning [8], and graph matching [7]. (2) The effectiveness
of our rematched method is limited by the batch size. When
using smaller batch sizes, the likelihood of observing se-
mantic relevant pairs will decrease. One possible improve-
ment is to maintain a queue to compare more data. We also
provide experimental analysis (see D.2 for details) to show
the impact of batch size.

B. Fast Solver for Refined Alignment

In this section, we detail the fast approximation for com-
puting the refined alignment. We will first introduce how
to transform the original partial OT problem into a standard
OT problem. Then, we will describe the solution by adopt-
ing the efficient Sinkhorn-Knopp algorithm.

Transform partial OT to OT-like problem. Recall that
our partial OT problem seeks only ρ-unit mass of p =∑m

i=1 piδ(xi) and q =
∑n

j=1 qjδ(yj) is matched. To solve
the exact partial OT problem, Chapel et al. [1] propose an
ingenious method that transforms the original partial OT
problem into an OT-like problem. Specifically, consider two

virtual samples xm+1 and yn+1 are added to the original
variables X and Y , respectively. Intuitively, to ensure ρ-
unit mass is transported between {xi}mi=1 and {yj}nj=1, we
should constrain the transport mass from {xi}mi=1 to yn+1

to ∥p∥1−ρ and the transport mass from {yj}nj=1 to xm+1 to
∥q∥1 − ρ. Thus, the original partial OT problem from X =
{xi}mi=1 to Y = {yj}nj=1 can be transformed into a standard
OT problem from X̂ = {xi}m+1

i=1 to Ŷ = {yj}n+1
j=1 , where

the corresponding probability measures are extended to p̂ =
[p⊤, ∥q∥1 − ρ]⊤ and q̂ = [q⊤, ∥p∥1 − ρ]⊤, respectively.
Following [1], the original cost matrix C is extended to Ĉ ∈
Rm+1×n+1:

Ĉ =

[
C ξ1n
ξ1⊤m 2ξ +A

]
, (1)

where A > max(Cij) and ξ > 0. Note that our original
partial OT problem restricts the transport among the false
positive pairs by imposing a mask matrix, which is extended
by:

M̂ =

[
M 1n

1
⊤
m 1

]
. (2)

Based on these, computing the optimal transport plan in par-
tial OT boils down to solve the following problem:

min
π̂∈Π(p̂,q̂;M̂)

⟨M̂ ⊙ π̂, Ĉ⟩F

s.t. Π(p̂, q̂;M̂) = {π̂ ∈ Rm+1×n+1
+ |(M̂ ⊙ π̂)1n = p̂,

(M̂ ⊙ π̂)⊤1m = q̂}.
(3)



Algorithm 2 Solving Eq.(3) with Sinkhorn algorithm.

Input: Distribution p̂ and q̂, cost matrix Ĉ, mask matrix
M̂ , partial transport mass ρ, Sinkhorn regulariza-
tion parameter λ, max iterations itmax.

Initialize K̂ = M̂ ⊙ e
−Ĉ
λ , b← 1n+1, it← 0

// Run Sinkhorn iterations
while it ≤ itmax and a, b not convergence do

a← p̂

K̂b
// element-wise division

b← q̂

K̂⊤a

// Get the approximate solution

π̂ = diag(a)K̂diag(b)
Output: Refined alignment π̃ = (M̂ ⊙ π̂)[1 : m, 1 : n].

Eq.(3) is a standard OT problem and our objective π̃ =
(M̂ ⊙ π̂)[1 : m, 1 : n].

Solving OT with Sinkhorn algorithm. Exactly solving
the OT problem with linear programming algorithms re-
quires high computational overhead. To resolve Eq.(3) ef-
ficiently, we resort to the entropy-regularized OT problem
by adding a entropic constraint −λH(M̂ ⊙ π̂), which en-
ables the transport plan to be computed by the lightspeed
Sinkhorn-Knopp algorithm [2]. Note that Gu et al. [4] show
that the Sinkhorn’s algorithm can be applied to solve the
transport plan with mask operation. The detailed solution is
presented in Algorithm. 2. We can see that the Sinkhorn’s
iteration only contains matrix multiplication and exponen-
tial operations, which can be computed efficiently.

C. Training Pipeline
In this section, we summarize our detailed training

pipeline in Algorithm. 1. The code of L2RM is available
at https://github.com/hhc1997/L2RM.

D. Additional Experiments
D.1. Implementation Details

Input preprocessing. Our experiments used the same in-
put preprocessing as in the evaluation of NCR [6]. Specif-
ically, all raw images are processed into the top 36 region
proposals by the Faster-RCNN, where each is encoded as a
2048-dimensional feature.

Backbone architecture. L2RM is a general framework
which could endow almost all existing cross-modal retrieval
methods robust against PMPs. Same as previous robust
methods [5,6,10,11], we implement L2RM based on SGR,
SAF, and SGRAF [3]. Specifically, the image regions and
captions are projected into a common representation space

by a full-connected network (i.e.,fv) and a Bi-GRU model
((i.e.,ft)), respectively. To calculate the cross-modal sim-
ilarities, the similarity function g is based on the Similar-
ity Graph Reasoning (SGR), Similarity Attention Filtration
(SAF), or the combination of SGR and SAF.

Epochs Flickr30K MS-COCO CC152K
warm up 5 10 10
training 35 20 40
total 40 30 50
update learning rate 15 10 20

Table 1. The epoch settings for training on three datasets.

Hyperparameters. We follow the same training setting
as NCR where applicable. Specifically, the word embed-
ding size is 300 and the common space size is 1024. The
retrieval model is trained by a Adam optimizer (default set-
tings) with a learning rate of 2 × 10−4 and a batch size
of 128. The epoch setting for training is shown in Tab. 1.
The learning rate will be decayed by 0.1 when the training
achieves the update epoch. The margin α used in triplet loss
is fixed as 0.2 for all experiments.

For hyperparameters specific to L2RM, we set the tem-
perature parameter τ as 0.05. We train our learnable cost
function using the Adam optimizer with the default settings
and a learning rate of 2 × 10−6. To solve the OT problem,
we fix the partial transport mass ρ = 0.1 for all experi-
ments. Note that for the experiments conducted on origi-
nal datasets (0 MRate), we empirically find that disabling
the positives masked strategy could achieve superior per-
formance. In addition, we set the Sinkhorn regularization
parameter λ as 0.01, 0.07, and 0.07 for Flickr30K, MS-
COCO, and CC152K, respectively.

D.2. More Comparisons Results

Results under Synthesized PMPs. Tab. 2 shows the full
comparison results on Flickr30K and MS-COCO under dif-
ferent mismatching rates. From the results, one could see
that the existence of PMPs remarkably impair the perfor-
mance of general cross-modal retrieval methods (i.e., IM-
RAM, SAF, and SGR). With the mismatching rates increas-
ing, their retrieval performance will degrade fast. Compared
with the robust methods, we can find that our L2RM con-
sistently outperforms them under different variants.

Results on well-annotated Datasets. The Flickr30K and
MS-COCO are two well-annotated datasets (almost 0
MRate), thus we conduct comparison experiments on the
original Flickr30K and MS-COCO to show L2RM’s per-
formance under well-matched pairs. The experimental re-
sults are reported in Tab. 3. From the results, one could
observe that L2RM can boost the retrieval performance of

https://github.com/hhc1997/L2RM


MRate Method
Flickr30K MS-COCO

Image-to-Text Text-to-Image rSum Image-to-Text Text-to-Image rSumR@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

0.2

IMRAM 59.1 85.4 91.9 44.5 71.4 79.4 431.7 69.9 93.6 97.4 55.9 84.4 89.6 490.8
SAF 62.8 88.7 93.9 49.7 73.6 78.0 446.7 71.5 94.0 97.5 57.8 86.4 91.9 499.1
SGR 55.9 81.5 88.9 40.2 66.8 75.3 408.6 25.7 58.8 75.1 23.5 58.9 75.1 317.1
NCR 73.5 93.2 96.6 56.9 82.4 88.5 491.1 76.6 95.6 98.2 60.8 88.8 95.0 515.0
BiCro 74.7 94.3 96.8 56.6 81.4 88.2 492.0 76.6 95.4 98.2 61.3 88.8 94.8 515.1
DECL-SAF 73.4 92.0 96.4 53.6 79.7 86.4 481.5 74.4 95.3 98.2 59.8 88.3 94.8 510.8
DECL-SGR 74.5 92.9 97.1 53.6 79.5 86.8 484.4 75.6 95.1 98.3 59.9 88.3 94.7 511.9
DECL-SGRAF 77.5 93.8 97.0 56.1 81.8 88.5 494.7 77.5 95.9 98.4 61.7 89.3 95.4 518.2
RCL-SAF 72.0 91.7 95.8 53.6 79.9 86.7 479.7 77.1 95.5 98.2 61.0 88.8 94.6 515.2
RCL-SGR 74.2 91.8 96.9 55.6 81.2 87.5 487.2 77.0 95.5 98.1 61.3 88.8 94.8 515.5
RCL-SGRAF 75.9 94.5 97.3 57.9 82.6 88.6 496.8 78.9 96.0 98.4 62.8 89.9 95.4 521.4
L2RM-SAF 73.7 94.3 97.7 56.8 81.8 88.1 492.4 77.9 96.0 98.3 62.1 89.2 94.9 518.4
L2RM-SGR 76.5 93.7 97.3 55.5 81.5 88.0 492.5 78.4 95.7 98.3 62.1 89.1 94.9 518.5
L2RM-SGRAF 77.9 95.2 97.8 59.8 83.6 89.5 503.8 80.2 96.3 98.5 64.2 90.1 95.4 524.7

0.4

IMRAM 44.9 73.2 82.6 31.6 56.3 65.6 354.2 51.8 82.4 90.9 38.4 70.3 78.9 412.7
SAF 7.4 19.6 26.7 4.4 12.0 17.0 87.1 13.5 43.8 48.2 16.0 39.0 50.8 211.3
SGR 4.1 16.6 24.1 4.1 13.2 19.7 81.8 1.3 3.7 6.3 0.5 2.5 4.1 18.4
NCR 68.1 89.6 94.8 51.4 78.4 84.8 467.1 74.7 94.6 98.0 59.6 88.1 94.7 509.7
BiCro 70.7 92.0 95.5 51.9 77.7 85.4 473.2 75.2 95.3 98.1 60.0 87.8 94.3 510.7
DECL-SAF 70.1 90.6 94.4 49.7 76.6 84.1 465.5 73.3 94.6 98.1 57.9 87.2 94.1 505.2
DECL-SGR 69.0 90.2 94.8 50.7 76.3 84.1 465.1 73.6 94.6 97.9 57.8 86.9 93.9 504.7
DECL-SGRAF 72.7 92.3 95.4 53.4 79.4 86.4 479.6 75.6 95.5 98.3 59.5 88.3 94.8 512.0
RCL-SAF 68.8 89.8 95.0 51.0 76.7 84.8 466.1 74.8 94.8 97.8 59.0 87.1 93.9 507.4
RCL-SGR 71.3 91.1 95.3 51.4 78.0 85.2 472.3 73.9 94.9 97.9 59.0 87.4 93.9 507.0
RCL-SGRAF 72.7 92.7 96.1 54.8 80.0 87.1 483.4 77.0 95.5 98.3 61.2 88.5 94.8 515.3
L2RM-SAF 72.1 92.1 96.1 52.7 78.8 85.9 477.7 74.4 94.7 98.3 59.2 87.9 94.4 508.9
L2RM-SGR 73.1 92.4 96.3 52.3 79.4 86.3 479.8 75.2 94.8 98.1 59.4 87.8 94.1 509.4
L2RM-SGRAF 75.8 93.2 96.9 56.3 81.0 87.3 490.5 77.5 95.8 98.4 62.0 89.1 94.9 517.7

0.6

IMRAM 16.4 38.2 50.9 7.5 19.2 25.3 157.5 18.2 51.6 68.0 17.9 43.6 54.6 253.9
SAF 0.1 1.5 2.8 0.4 1.2 2.3 8.3 0.1 0.5 0.7 0.8 3.5 6.3 11.9
SGR 1.5 6.6 9.6 0.3 2.3 4.2 24.5 0.1 0.6 1.0 0.1 0.5 1.1 3.4
NCR 13.9 37.7 50.5 11.0 30.1 41.4 184.6 0.1 0.3 0.4 0.1 0.5 1.0 2.4
BiCro 64.1 87.1 92.7 47.2 74.0 82.3 447.4 73.2 93.9 97.6 57.5 86.3 93.4 501.9
DECL-SAF 56.6 82.5 89.7 40.4 66.6 76.6 412.4 68.6 92.9 97.4 54.1 84.9 92.7 490.6
DECL-SGR 64.5 85.8 92.6 44.0 71.6 80.6 439.1 69.7 93.4 97.5 54.5 85.2 92.6 492.9
DECL-SGRAF 65.2 88.4 94.0 46.8 74.0 82.2 450.6 73.0 94.2 97.9 57.0 86.6 93.8 502.5
RCL-SAF 63.9 84.8 91.7 43.0 71.2 79.4 434.0 70.1 93.1 96.8 54.5 84.4 91.9 490.8
RCL-SGR 62.3 86.3 92.9 45.1 71.3 80.2 438.1 71.4 93.2 97.1 55.4 84.7 92.3 494.1
RCL-SGRAF 67.7 89.1 93.6 48.0 74.9 83.3 456.6 74.0 94.3 97.5 57.6 86.4 93.5 503.3
L2RM-SAF 66.1 88.8 93.8 47.8 74.2 82.2 452.9 71.2 93.4 97.5 56.5 85.9 93.0 497.5
L2RM-SGR 65.1 87.8 93.6 47.0 73.5 81.5 448.5 72.7 93.9 97.5 56.9 86.2 93.3 500.5
L2RM-SGRAF 70.0 90.8 95.4 51.3 76.4 83.7 467.6 75.4 94.7 97.9 59.2 87.4 93.8 508.4

0.8

IMRAM 3.1 9.7 5.2 0.3 0.9 1.9 21.1 1.3 5.0 8.3 0.2 0.6 1.3 16.7
SAF 0.0 0.8 1.2 0.1 0.5 1.1 3.7 0.2 0.8 1.4 0.1 0.5 1.0 4.0
SGR 0.2 0.3 0.5 0.1 0.6 1.0 2.7 0.2 0.6 1.0 0.1 0.5 1.0 3.4
NCR 1.5 6.2 9.9 0.3 1.0 2.1 21.0 0.1 0.3 0.4 0.1 0.5 1.0 2.4
BiCro 2.3 9.2 17.2 2.6 10.2 16.8 58.3 62.2 88.6 94.6 47.4 79.2 88.5 460.5
DECL-SAF 46.9 73.7 83.0 32.1 59.0 69.4 364.1 59.3 87.9 94.8 46.3 79.1 88.9 456.3
DECL-SGR 44.4 72.6 82.0 33.9 59.5 69.0 361.4 60.0 88.7 94.5 45.9 78.8 88.3 456.2
DECL-SGRAF 53.4 78.8 86.9 37.6 63.8 73.9 394.4 64.8 90.5 96.0 49.7 81.7 90.3 473.0
RCL-SAF 45.0 72.8 80.8 30.7 56.5 67.3 353.1 62.9 89.3 94.9 47.1 77.9 87.4 459.5
RCL-SGR 47.1 70.5 79.4 30.3 56.1 66.3 349.7 63.2 89.3 95.2 47.6 78.7 88.0 462.0
RCL-SGRAF 51.7 75.8 84.4 34.5 61.2 70.7 378.3 67.4 90.8 96.0 50.6 81.0 90.1 475.9
L2RM-SAF 50.8 77.9 85.5 35.6 62.6 72.7 385.1 64.7 90.8 95.8 50.0 80.9 89.4 471.6
L2RM-SGR 50.5 77.2 83.9 34.2 61.1 71.6 378.5 65.2 90.3 96.1 49.8 81.0 88.2 470.6
L2RM-SGRAF 55.7 80.8 87.8 39.4 65.4 74.9 404.0 69.0 91.9 96.4 52.6 82.4 90.3 482.6

Table 2. Image-text retrieval performance under different mismatching rates (MRate) on Flickr30K and MS-COCO.

existing methods, i.e., SAF, SGR, and SGRAF, even though
it is proposed to improve robustness. On the one hand, the

dataset cannot be absolutely well-matched; it still contains
a few mismatched pairs. On the other hand, our rematching



Method
Flickr30K MS-COCO

Image-to-Text Text-to-Image rSum Image-to-Text Text-to-Image rSumR@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
IMRAM 68.8 91.6 96.0 53.0 79.0 87.1 475.5 74.0 95.6 98.4 60.6 88.9 94.6 512.1
SAF 73.7 93.3 96.3 56.1 81.5 88.0 488.9 76.1 95.4 98.3 61.8 89.4 95.3 516.3
SGR 75.2 93.3 96.6 56.2 81.0 86.5 488.8 78.0 95.8 98.2 61.4 89.3 95.4 518.1
SGRAF 77.8 94.1 97.4 58.5 83.0 88.8 499.6 79.6 96.2 98.5 63.2 90.7 96.1 524.3
NCR 77.3 94.0 97.5 59.6 84.4 89.9 502.7 78.7 95.8 98.5 63.3 90.4 95.8 522.5
BiCro 79.5 94.2 97.4 59.4 83.6 89.8 503.9 78.4 95.6 98.5 62.6 89.7 95.7 520.5
DECL-SGRAF 78.9 94.7 97.4 59.3 84.1 89.8 504.2 79.3 96.5 98.7 63.3 90.6 95.0 523.4
RCL-SAF 76.7 93.7 97.3 56.2 82.6 88.8 495.3 78.5 96.1 98.6 62.7 90.0 95.4 521.3
RCL-SGR 77.5 94.7 97.4 58.8 83.3 88.9 500.6 78.2 96.2 98.4 62.9 90.0 95.7 521.4
RCL-SGRAF 79.9 96.1 97.8 61.1 85.4 90.3 510.6 80.4 96.4 98.7 64.3 90.8 96.0 526.6
L2RM-SAF 77.1 93.2 96.7 57.5 82.4 87.8 494.7 78.2 95.7 98.6 63.4 89.6 95.1 520.6
L2RM-SGR 79.1 94.1 97.7 58.1 83.6 88.9 501.5 79.0 96.4 98.3 63.7 90.2 95.8 523.4
L2RM-SGRAF 79.6 95.9 98.4 60.7 84.8 89.0 508.4 80.5 96.6 98.9 65.7 90.8 96.1 528.6

Table 3. Image-text retrieval performance on original Flickr30K and MS-COCO datasets.

strategy augments more positive pairs to a certain extent by
comparing unpaired samples, which could enhance the gen-
eralization of the model.

Results on MS-COCO 5K Datasets. Tab. 4 shows the
quantitative results on MS-COCO with full 5K test images.
From the results, we could observe that co-trained models
offer bigger gains when the test data becomes complex.

MRate Method Image-to-Text Text-to-Image rSumR@1 R@5 R@10 R@1 R@5 R@10

0.2

L2RM-SAF 56.6 83.3 90.9 40.1 69.5 80.0 420.4
L2RM-SGR 56.6 83.4 90.6 40.6 69.5 80.0 420.7
L2RM-SGRAF 59.6 85.1 92.0 42.5 71.5 81.3 432.0

0.4

L2RM-SAF 53.1 81.6 89.8 38.4 67.5 78.2 408.6
L2RM-SGR 53.5 81.0 89.5 38.0 66.9 77.7 406.6
L2RM-SGRAF 57.1 83.4 91.0 40.8 69.4 79.7 421.4

0.6

L2RM-SAF 51.0 78.4 86.8 34.9 63.1 74.7 388.9
L2RM-SGR 50.2 79.0 87.8 34.5 63.0 74.6 389.1
L2RM-SGRAF 53.5 81.0 88.9 37.3 65.7 76.7 403.1

0.8

L2RM-SAF 40.7 71.2 80.9 28.2 55.8 68.0 344.8
L2RM-SGR 42.6 71.5 81.7 28.8 55.7 67.3 347.6
L2RM-SGRAF 45.7 74.4 83.9 30.9 58.5 69.8 363.2

Table 4. Performance under different MRates on MS-COCO 5K.

Impact of Batch Size. To study the influence of different
batch sizes for our method, we conducted the ablation study
on Flickr30K with 0.6 MRate. Note that our method can
flexibly adapt to different batch sizes by adjusting the trans-
port mass ρ, and we set ρ to 0.05, 0.1, and 0.2 for the batch
size 64, 128, and 256, respectively. From Tab. 5, one could
observe that our method still achieves superior results with a
small batch size, i.e., 64, and even surpasses the second-best
baseline RCL-SGRAF (in terms of the rSum metric) using
a 128 batch size. We could also see that our L2RM can gain

Batch Method Image-to-Text Text-to-Image rSumR@1 R@5 R@10 R@1 R@5 R@10

64

L2RM-SAF 63.5 86.4 93.2 45.8 73.0 81.4 443.3
L2RM-SGR 62.9 87.4 92.7 46.1 72.8 81.3 443.2
RCL-SGRAF 66.9 88.3 94.1 48.3 75.3 82.5 455.4
L2RM-SGRAF 67.2 89.4 94.2 49.2 75.3 83.4 458.7

128

L2RM-SAF 66.1 88.8 93.8 47.8 74.2 82.2 452.9
L2RM-SGR 65.1 87.8 93.6 47.0 73.5 81.5 448.5
RCL-SGRAF 67.7 89.1 93.6 48.0 74.9 83.3 456.6
L2RM-SGRAF 70.0 90.8 95.4 51.3 76.4 83.7 467.6

256

L2RM-SAF 66.7 89.0 93.5 48.0 74.2 82.1 453.5
L2RM-SGR 66.0 88.5 94.2 48.2 73.9 82.2 453.0
RCL-SGRAF 66.4 88.9 94.0 47.0 73.3 81.3 450.9
L2RM-SGRAF 69.7 91.4 95.6 51.6 77.1 83.6 469.0

Table 5. Performance with different batch sizes on Flickr30K.

from a larger batch size, i.e., 256, while some methods may
suffer a performance drop.

D.3. Analysis on Refined Alignment

Our refined alignment is derived from a partial OT prob-
lem, which only allows ρ unit mass to be transported. We
further analyze how the transported and untransported data
can benefit robust cross-modal retrieval. In Fig. 1, we plot
the distribution of averaged refined alignments (image to
caption) for both transported and untransported data drawn
from each batch of the MS-COCO training set. The normal-
ized distribution is ranked in descending order of probabil-
ity. The upper subplot shows that the probability of trans-
port data tends to concentrate on one dominant target. It
is in line with our expectations that L2RM captures the se-
mantic similarity among some unpaired samples. Interest-
ingly, for those untransported data, the down subplot shows
that the distribution of averaged refined alignments approx-
imates a uniform distribution. Such refined alignments are
formally equivalent to the label smoothing strategy, wherein
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Figure 1. The averaged ranked distribution of normalized refined alignments (image to caption) about transported (upper subplot) and
untransported (down subplot) data on MS-COCO under 0.4 PMPs.

the original one-hot targets are mixed with uniform target
vectors, i.e.,

yLS
i = (1− γ)yi +

γ

Nb − 1
(1Nb

− yi), (4)

where γ is a smoothing parameter. As the original targets
provide incorrect supervision for those mismatched pairs,
increasing the value of γ as much as possible can allevi-
ate the impact of the wrong matching relation. Our refined
alignments accord with this rule, which reveals that the un-
transported data can also improve the robustness against
mismatched pairs.

References
[1] Laetitia Chapel, Mokhtar Z Alaya, and Gilles Gasso. Par-

tial optimal tranport with applications on positive-unlabeled
learning. Advances in Neural Information Processing Sys-
tems, 33:2903–2913, 2020. 1

[2] Marco Cuturi. Sinkhorn distances: Lightspeed computation
of optimal transport. Advances in neural information pro-
cessing systems, 26, 2013. 2

[3] Haiwen Diao, Ying Zhang, Lin Ma, and Huchuan Lu. Sim-
ilarity reasoning and filtration for image-text matching. In
Proceedings of the AAAI conference on artificial intelli-
gence, volume 35, pages 1218–1226, 2021. 2

[4] Xiang Gu, Yucheng Yang, Wei Zeng, Jian Sun, and Zongben
Xu. Keypoint-guided optimal transport with applications in
heterogeneous domain adaptation. Advances in Neural In-
formation Processing Systems, 35:14972–14985, 2022. 2

[5] Peng Hu, Zhenyu Huang, Dezhong Peng, Xu Wang, and Xi
Peng. Cross-modal retrieval with partially mismatched pairs.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2023. 2

[6] Zhenyu Huang, Guocheng Niu, Xiao Liu, Wenbiao Ding,
Xinyan Xiao, Hua Wu, and Xi Peng. Learning with noisy
correspondence for cross-modal matching. Advances in Neu-
ral Information Processing Systems, 34:29406–29419, 2021.
2

[7] Yijie Lin, Mouxing Yang, Jun Yu, Peng Hu, Changqing
Zhang, and Xi Peng. Graph matching with bi-level noisy
correspondence. In Proceedings of the IEEE/CVF interna-
tional conference on computer vision, pages 23362–23371,
2023. 1

[8] Yijie Lin, Jie Zhang, Zhenyu Huang, Jia Liu, Zujie Wen, and



Xi Peng. Multi-granularity correspondence learning from
long-term noisy videos. arXiv preprint arXiv:2401.16702,
2024. 1

[9] Yang Qin, Yingke Chen, Dezhong Peng, Xi Peng,
Joey Tianyi Zhou, and Peng Hu. Noisy-correspondence
learning for text-to-image person re-identification. arXiv
preprint arXiv:2308.09911, 2023. 1

[10] Yang Qin, Dezhong Peng, Xi Peng, Xu Wang, and Peng
Hu. Deep evidential learning with noisy correspondence
for cross-modal retrieval. In Proceedings of the 30th ACM
International Conference on Multimedia, pages 4948–4956,
2022. 2

[11] Shuo Yang, Zhaopan Xu, Kai Wang, Yang You, Hongxun
Yao, Tongliang Liu, and Min Xu. Bicro: Noisy correspon-
dence rectification for multi-modality data via bi-directional
cross-modal similarity consistency. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 19883–19892, 2023. 2


	. Limitations
	. Fast Solver for Refined Alignment
	. Training Pipeline
	. Additional Experiments
	. Implementation Details
	. More Comparisons Results
	. Analysis on Refined Alignment


