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A. Photometric and geometric cues of NeRSP
A.l. Derivation of geometric cue

As shown in Fig. S1, given a scene point observed by dif-
ferent views, its surface normal at the target view can be
represented by the azimuth and elevation angles ¢ and 6 re-
spectively, i.e.,

Ny sin 6 cos ¢
n= |ny,| = |sinfsing| . (D)
T, cos 0

The relationship between the azimuth angle and the element
of the surface normal can be formulated as

Ny COS P — Ny sin g = 0. 2)
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Figure S1. A scene point observed by the target view and the
source view.

The surface normal at the target view can be calculated
by rotating the normal at the source view, i.e. n = Rn.
Given the rotation matrix from the calibrated camera poses
as R = [ry,r2,r3]", Eq. (2) based on fi can be formulated
as

rirn cos ¢ — r;—n sin ¢ = 0. 3)

Following MVAS [2], we can rearrange Eq. (3) to get the
orthogonal relationship between the surface normal and the
projected tangent vector t(¢) as defined below,

n' (cos¢r; —sin¢ry) = 0. 4
t(¢)

This conclusion on azimuth angle can be extend to the an-



gle of polarization (AoP). The m ambiguity can be naturally
resolved as Eq. (4) stands if we add ¢ by 7. The 7/2 ambi-
guity can be addressed by using a pseudo-projected tangent
vector t(¢) such that

n' (sin¢r; + cos ¢ry) = 0. 5)

t(e)

If one scene point x is observed by f views, we can stack
Eq. (4) and Eq. (5) based on different rotations and observed
AoPs, leading to a linear system

T(x)n(x) = 0. (6)

We treat this linear system as our geometric cue for multi-
view polarized 3D reconstruction.

A.2. Derivation of photometric cue

Following the polarized BRDF model [1], the output stokes
vector can be decomposed into the diffuse and specular
parts modeled via H; and H correspondingly, i.e.,

So(V) = /QHdSi(w) dw‘f'/QHsSi(w) dw. (7

The diffuse stokes component under a single light can be
formulated as
T
T~ cos(2¢,
_07 ; ( QS ) ; (8)
T, sin(2¢,)
0

Hys;(w) = paL(w)w ' nT; T,

where pg denotes the diffuse albedo, ¢,, is the azimuth an-
gle of incident light onto the plane perpendicular to the sur-
face normal, Ti:"o and TZ_O denote the calculations of Fresnel
transmission coefficients [1] that are related to the angle be-
tween view direction and surface normal. Following the no-
tions in PANDORA [3], we rewrite the diffuse stokes vector
under environment light as

Ty
— T, cos(2¢n)
/QHdsZ-(w) dw =Ly T sin(26,) | 9)
0

where Ly = [, pL(w)w 'nT; T, dw is denoted as diffuse
radiance. Instead of calculating from the equation, the dif-
fuse radiance as a spatially-varying variable is mapped di-
rectly from a neural point feature extracted by a coordinate-
based MLP.

On the other hand, the specular stokes vector under a
single light direction w in the polarimetric BRDF model
can be defined as

Rr
DG | R~ cos(2¢p)
InTv |—-R™ Sin(2¢h) ’
0

H;s; (w) = psL(w)

(10)

where p; denotes the specular albedo; D and G denote the
normal distribution and shadowing term in the Microfacet
model [8], which can be controlled by surface roughness;
RT and R~ denote the calculations of the Fresnel reflection
coefficients [1], which are related to the angle between sur-
face normal and incident light direction; ¢y, is the incident
azimuth angle w.r.t. the half vector h = ﬁ Follow-
ing the notions in PANDORA [3], we rewrite the specular
stokes vector under environment light as

R+
| B R~ cos(2¢p)
/QHsSz(w) dw=Ls | p- sin(2¢p) |’ o
0

where L, = p; fQ L(w) 4£§V dw denotes specular radi-

ance. With the spilt-sum approximation [5], we can further
approximate L, ~ 4= Qf Jo L(w) dw. Combining with the
diffuse stokes vector shown in Eq. (9), we build the photo-
metric cue based on the following polarimetric image for-

mation model

T.F R*
B T cos(2¢y) R~ cos(2¢p)
So(v) = La =T, sin(2¢y,) +Ls —R™ sin(2¢p) | (12)
0 0

B. Implementation details

This section presents the rendering details of our Synthetic
Multi-view Polarized image dataset SMVP3D, and the
training details of NeRSP.

B.1. Dataset

We provide SMVP3D, which contains images of five syn-
thetic reflective objects under natural illumination. For
each object, we render 48 views and record the correspond-
ing ground truth (GT) surface normal maps. We use Mit-
suba3 [4] as the rendering engine, with the BRDF type set
to polarized plastic material in our rendering. For the dif-
fuse albedo p4, we utilize a spatially varying albedo texture
to enhance the realism of our rendering results. At the same
time, we keep the specular albedo p; at a constant value of
1.0 and set the surface roughness to 0.05. This approach en-
sures uniform reflectivity across the surfaces of the objects.
The resulting polarized images are rendered at a resolution
of 512 x 512 pixels.

B.2. Training

The hyperparameters Ay, Ay, and A, in our loss function
are set to 1, 1, and 0.1, respectively. During the training
process, we employ a warm-up strategy following PAN-
DORA [3], where for the first 1,000 epochs, we consider
only unpolarized information in the photometric cue and
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Figure S3. Qualitative evaluation of surface normal estimation on
our SMVP3D. Even and odd rows show the surface normal esti-
GT NeRO [6] S-VoISDF [9]

mates and the corresponding angular error distributions.
MVAS [2] PANDORA [3] NeRSP (Ours)
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Figure S2. Qualitative evaluation of shape reconstruction on

N/A which takes about 6 hours on an Nvidia RTX 3090 GPU,
with the memory consuming around 8, 000 MB.

C. BRDF estimation and re-rendering results

Figure S4 (top) presents our estimation of roughness, dif-
fuse, and specular components. The estimates are a bit
noisy due to only 6 views. Similar to Ref-NeRF [7]

SMVP3D. where illumination is implicitly controlled via IDE, we can-

not conduct relighting experiments. Therefore, we show
assume that the object’s specular component is 0. In all ex- the novel view synthesis results instead, as visualized in
periments, we use a resolution of 512 x 512 for training and Fig. S4 (bottom). Compared with existing methods, our re-
testing on SMVP3D, and 512 x 612 for real-world datasets. rendering images are closer to the corresponding real-world
Our method generally converges around 100, 000 epochs, observations.
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Figure S4. (Top) Estimated BRDF from our method. (Bottom)
Comparison of novel view synthesis.

D. Additional results on our datasets

In this section, we present additional results of shape
reconstruction on SMVP3D and Real-world Multi-view
Polarized image dataset RMVP3D.

D.1. Evaluation on SMVP3D

We present the qualitative reconstruction results of baseline
methods and our approach in Fig. S2. The results from
MVAS [2] lack detail, as the photometric cue is not taken
into account. While NeRO [6] offers improved shape recon-
structions, it fails to provide a reliable surface for textureless
objects, such as DAVID. S-VoISDF [9] uses a coarse-to-fine
Multi-View Stereo (MVS) approach and shows increased
sensitivity to texture information on object surfaces, which
sometimes leads to misinterpreting texture details as struc-
tural features. PANDORA [3] has difficulty in effectively
separating albedo and specular information, leading to un-
reliable reconstruction results. Our method, NeRSP, effec-
tively utilizes both photometric and geometric cues, result-
ing in reconstructions that more accurately reflect the GT
structure.

We also display the surface normal estimates and the
corresponding angular error distributions in Fig. S3, which
consistently show that NeRSP achieves better shape recon-
struction results for reflective surfaces with sparse input
views.

D.2. Evaluation on RMVP3D

In this section, we present another object reconstruction
result on RMVP3D. Figure S5 shows that NeRO [6],
MVAS [2] and NeRSP are able to accurately reconstruct a
simple spherical object with a reflective surface. In contrast,
S-VoISDF [9] and PANDORA [3] can not decomposing the
albedo and specular component of the surface, resulting in
distortion in the shape reconstruction process.

To distinguish among the reconstruction results of
NeRO [6], MVAS [2], and NeRSP, we visualize the Cham-
fer Distance for the meshes reconstructed by each method.
As shown in Fig. S6, the color of each point indicates its

NeRO [6] S-VoISDF [9]
MVAS [2 PANDORA [3 NeRSP (Ours)

Figure S5. Qualitative evaluation of shape reconstruction BALL.

NeRO [6] MVAS [2] NeRSP (Ours)

Figure S6. The Chamfer Distance maps clipped between 0
and 5mm for the estimated shapes of BALL from NeRO [6],
MVAS [2], and NeRSP.

Chamfer Distance, which is clipped between 0 and 5 mm.
These illustrations show that the reconstruction error asso-
ciated with NeRSP is smaller compared to that of the other
two methods.

E. Ablation study on surface reflectance

Our method aims at reflective surface reconstruction, and it
can also be applied to recovering the shape with rough sur-
faces. As an example, we re-render the SNAIL object with
its specular albedo ps reducing from 1.0 to 0.1. The mean
angular error (MAE) of the estimated surface normal at 6
input views from different methods are shown in Table S1.
The qualitative evaluation of the surface normal estimation
and the corresponding angular error distribution of different
methods under the same input view are shown in Fig. S7.
These experiments indicate that most methods improve re-
construction quality on rough surfaces compared to reflec-
tive surfaces. In particular, our method consistently delivers
the most reliable surface reconstruction of the object.

F. Ablation study on #views

Our NeRSP aims at the reconstruction of reflective surfaces
under sparse input views. The experiments shown in the



Table S1. Comparison on surface normal estimation on SNAIL
evaluated by mean angular error (MAE) ().

Reflectance type NeRO [6] S-VoISDF [9] MVAS [2] PANDORA [3] NeRSP

Reflective 11.45 7.59 6.19 16.54 4.82
Rough 5.94 8.12 5.75 8.63 4.18

vebilebd

MVAS [2]

NeRO[6]  S-VoISDF [9]

&&&&&&

0

PANDORA [3]  NeRSP (ours)

Figure S7. Qualitative evaluation of surface normal estimation on
SNAIL with less reflective reflectance. Top row shows the 6 input
views. Second and third rows show the surface normal estimates
and the corresponding angular error distributions.

Table S2. Qualitative evaluation on LION measured by Chamfer
Distance ({) under different input views.

#Views NeRO [6] S-VoISDF [9] MVAS [2] PANDORA [3] NeRSP

3 34.48 31.50 23.96 24.44 24.01
6 10.74 7.39 7.51 15.04 5.18
12 5.50 6.80 531 12.1 4.29
24 4.96 6.14 5.32 12,5 4.11

main paper take 6 sparse views as input. To evaluate our
method under the different numbers of input views (i.e.,
#views), we conduct experiments on the real-world object
LION under the setting of 3, 6, 12, and 24 views. Figure S8
visualizes the recovered shapes, while the qualitative evalu-
ation with Chamfer Distance is presented in Table S2.

Under sparse input views, such as 3, existing methods
struggle to recover plausible results. This is mainly because
they focus either on photometric cue or geometric cue. Tak-
ing S-VoISDF [9] as an example, the estimated shape, as
observed in close-up views, is heavily influenced by the
corresponding texture. This leads to incorrect shapes due
to the shape-radiance ambiguity under sparse views. By ad-
dressing both the geometric and the photometric cues, our
NeRSP reduces the ambiguity under sparse inputs. As a
result, we achieve more reasonable shape reconstruction.

This observation remains valid when the number of in-
put views exceeds 12. As shown in Table S2, our NeRSP
consistently achieves the smallest Chamfer Distance with
an increasing number of input views. This shows the effec-
tiveness of our method on reflective surfaces over a wide
range of views.

G. Evaluation on polarimetric MVIR dataset

Besides the real-world experiments on PANDORA
dataset [3] and our RMVP3D, we also provide the evalu-
ation on a multi-view polarized images dataset present in
PMVIR [10]. As shown in Fig. S9, we visualize the shape
recovery results from PANDORA [3] and ours, taking 6
sparse views as input. Since there is no GT shape in this
dataset, we use the results from PMVIR [10] as a reference,
which takes 31 and 56 views as input for the camera and
the car scene, respectively. We observe that our results are
more reasonable compared to those using PANDORA [3],
demonstrating the effectiveness of our method on sparse
3D reconstruction.
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Figure S8. Qualitative results of shape reconstruction on LION with different input #views.
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Figure S9. Shape estimation results on the Polarimetric MVIR dataset [10]. PANDORA [3] and our NeRSP use polarized images with 6
sparse views as input. As a reference, PMVIR [10] uses 31 and 56 input views on the camera and the car cases, respectively.
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