A. Appendix
A.l. Additional Implementation Details

Camera pose fine-tuning. At test time, the camera poses
are fine-tuned jointly with the diffusion model, by simply
back-propagating gradients to camera parameters, repre-
sented as azimuth, elevation, and radius. We update them
using a much higher learning rate of 100, which is 1000 the
learning rate of the diffusion model. Additionally, we con-
strain the camera elevation and scale to make optimization
more stable: Elevation is projected to [0, 7] every iteration,
and the radius is mapped to a range of [1.5, 2.2] via a Soft-
Max.

3D reconstruction. We regularize our 3D reconstruction
using a number of loss terms. To get smooth surfaces, we
regularize surface normals 7 to be smooth. £ ; regularizes
normals at sampled 3D points X to be smooth to small
perturbations ¢, while L o regularizes rendered normals
RZZ () from random camera viewpoints 7 to be smooth.
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Additionally, we regularize the density field to form
opaque surfaces without floating artifacts. Lsparse nudges ren-
dered masks R** () to be sparse with an L1-regularization
loss to prevent floaters, while Lopaque minimizes their en-
tropy to make the closer to 0/1, from random cameras 7.
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Total regularization is a weighted sum of the normal and
mask loss terms with A\p 1 = 0.1, Aq 2 = 0.1, Aspare = 1,
and Aopaque = 1:
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A.2. Additional Novel View Synthesis Ablations

We provide an additional ablation study of the components
of our system, evaluated on novel view synthesis. Table 6
presents all of the ablated components.

3D preservation loss. We compare different versions of
regularization losses, applied during the fine-tuning stage of
the view-conditioned diffusion model. Specifically, we eval-
uate three types: no regularization (b2), regularization by
sampling random pairs from the pre-training set and incorpo-
rating them during the fine-tuning (b2), and regularization

by incorporating nearest-neighbors according to CLIP simi-
larity score (3D reservation loss, as described in Section 3.2).

As presented in Table 6, incorporating random images
from the training set during the fine-tuning results in compa-
rable performance to not applying regularization. Differently
from these two options, using CLIP as a metric for retriev-
ing nearest neighbors from the training data results in an
improvement in all metrics.

Camera initialization and refinement. Similarly to the
ablations presented in Section 4.3, we compare the down-
stream performance with different camera pose initialization
- RelPose++ (d2) and RelPose++* (SAP3D). Differently
from Section 4.3, we apply the fine-tuning stage in both
cases. As shown in Table 6, scaling the training data of
RelPose++ results in significant improvements in novel view
synthesis - 4.3dB increase in PSNR. Additionally, the re-
sults of initialization from RelPose++* are comparable to
initialization with ground-truth camera poses (d3).

We evaluate the effect of not fine-tuning the camera poses
together with the view-conditioned diffusion model (d1).
The camera-pose fine-tuning that is done in SAP3D results
in 0.4dB improvement in PSNR. Therefore, fine-tuning the
camera pose is beneficial for downstream novel view synthe-
sis.

Sampling conditioning. During the novel view generation
process, we use stochastic conditioning - each sampling
step from the diffusion model is conditioned on a randomly
sampled image from the input images. We compare this
conditioning strategy to two different conditioning strategies
- using one random image for all the diffusion sampling
steps (c2), and conditioning the diffusion process on the
closest input image, computed according to the camera pose
(cl). As shown in Table 6, conditioning on the nearest
image results in better performance than conditioning on one
random image, and stochastic sampling (SAP3D) is better
than both.

A.3. Additional Qualitative Results

In Figure 9, We show two sets of qualitative reconstruction
comparisons: one on the ABO dataset [2] and another on
the Tanks and Temples dataset [17]. These comparisons
evaluate our proposed method SAP3D against Zero123 [23]
and One2345 [21].

We provide additional qualitative results for novel view
synthesis and 3D reconstruction, as well as additional qual-
itative comparisons for our ablation study in https://
sap3d.github.io/supp.html.
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Model Reeularization Sampling Cameras Novel View Quality
Finetuned & Conditioning Initialization  Refine || PSNRT SSIMtT LPIPS|
SAP3D | v | CLIP-retrieved |  Stochastic | RelPose++* v | 177 0.83 0.13
a | | | Stochastic | RelPose++* | 163 078 0.18
bl v Random Stochastic RelPose++* v 16.8 0.79 0.16
b2 v None Stochastic RelPose++* v 16.4 0.79 0.17
cl v CLIP-retrieved Nearest RelPose++* v 16.8 0.72 0.16
c2 v CLIP-retrieved | Random single | RelPose++* v 15.2 0.79 0.23
dl v CLIP-retrieved Stochastic RelPose++* 17.3 0.80 0.15
d2 v CLIP-retrieved Stochastic RelPose++ v 13.4 0.74 0.29
d3 v CLIP-retrieved Stochastic Ground Truth v 17.8 0.84 0.13

Table 6. Ablation study on novel view synthesis. We evaluate the effect of various design choices on novel view synthesis. RelPose++*
denotes our RelPose++ model trained on Objaverse. In the paper, we refer to a as “SAP3D w/o adaptation”. Please see the text for details.
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Figure 9. 3D reconstruction comparisons on Tanks and Temples and ABO respectively between SAP3D, Zero123 [23] and One2345 [21].
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