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1. Data Compression
Motivation. Section 4.4.2 of the main paper explains how
we apply antenna dropouts and random phase noise to an
intermediate 3-D complex tensor to for data augmentation
during the self-supervised training. However, this requires
that we load this data into memory, which takes orders of
magnitude more memory, significantly slowing down the
data loading phase. To counter this, we compress the radar
data as we elaborate in this section.

We first provide a more detailed explanation of the radar
processing pipeline. To create radar heat maps, a raw radar
heat map is processed through a pipeline to get a L × A
range-azimuth map in the end. Right before the MIMO an-
tennas are combined, an intermediate variable calculated
in the process, which we denote by x, is a complex 4-
D tensor of shape (M,N,L,A). Here L represents range
indices, A the azimuth indices. M and N also represent
the number of transmitters and receivers respectively in the
MIMO setup. Sometimes x is reshaped into the 3-D shape
(MN,L,A). The range azimuth map, which we denote by
xRA,is achieved as follows:

xRA(ρ, θ) =

∣∣∣∣∣
M,N∑
m,n

x(m,n, ρ, θ)

∣∣∣∣∣ ,
where the sums over m and n aggregate all the antenna
channel, giving us the (L,A) range-azimuth map. However,
as mentioned above, the augmentations in Section 4.4.2 of
the main paper require loading x into memory, which is
MN times larger than the xRX ins size, on top of being
complex-valued, which makes it in take 2MN× space. For
example, in the Radatron dataset, the range azimuth map
generation involves 86 effective antennas, this translates to
172× larger memory requirement. We therefore opt for a
data compression method that we explain below.

*Work done during internship at EPFL.
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Compression Method. The methodology involves decom-
posing a 3-D complex tensor x of dimensions (MN,L,A)
into its magnitude and angle components for separate com-
pression. Representing x as r ⊙ exp(iθ), where r and θ
are 3-D tensors of identical dimensions, and ⊙ signifies
element-wise multiplication, we proceed with the compres-
sion process. This involves linearly quantizing θ into Nθ

levels and logarithmically quantizing r into Nr levels.
The linear quantization of θ can be expressed as:

Qθ(x) =

⌊
θ − θmin

∆θ

⌉
∆θ + θmin,

where ∆θ = θmax−θmin
Nθ−1 and θmin, θmax are the minimum and

maximum values of θ, respectively.
The logarithmic quantization of r can be formulated as:

Qr(x) = exp

log( r

rmin

)
· Nr

log
(

rmax
rmin

)
 ·

log
(

rmax
rmin

)
Nr

·rmin,

where rmin and rmax are the minimum and maximum values
of r.

In Radical, we choose Nθ = Nr = 256, which com-
presses each complex number to 2 bytes, a 16-fold com-
pression compared to double and 8-fold compared to
single. We found little to no difference in training ac-
curacy using the compressed version of the data.

2. Results
Here we present additional results on top of the main results
of the paper.
Oritentation Split. We show our method’s performance
against random initialization for different car orientations,
following Radatron [3]. Table 1 shows the results for
Radical against Radatron (with random initialization) for
straight, oriented, and incoming cars. Straight car are those
on the same lane as the ego-vehicle, and have roughly
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Method AP AP50 AP75 APstr APori APinc

Radatron [3] 56.5± 0.2 88.9± 0.4 64.5± 1.7 61.9± 0.4 32.9± 0.7 30.9± 0.9
Radical (ours) 62.3±0.6 89.6±0.1 69.7±1.2 68.7±0.5 33.0±1.5 31.8±1.3
Vision Labels + finetune 59.3± 0.9 89.0± 0.3 67.8± 0.7 65.4± 1.2 32.8± 1.2 30.8± 0.6

Table 1. Comparison of more settings and with vision label pretraining For row 1, the backbone of the detection model is
randomly initialized. For row 2 and 3, we pre-trained the model with 32k Radatron unlabeled frames, and fine-tuned it on 13k
Radatron labeled frames. Results are averaged for 6 runs.

Eval Metric AP 50 (%) AP 75 (%) mAP (%)
Model Split str. ori. inc. overall str. ori. inc. overall str. ori. inc. overall

Radatron [3] 94.0 59.1 69.5 88.9 72.1 35.2 25.0 64.5 61.9 32.9 30.9 56.5
Radical (intra) 94.2 60.2 70.5 89.0 75.2 34.7 25.3 66.8 65.5 32.9 31.4 59.4
Radical (cross) 94.5 58.7 72.1 89.3 75.8 33.2 25.2 67.1 65.8 32.3 32.2 59.7
Radical (intra+cross) 94.5 58.7 73.0 89.6 78.5 31.4 27.2 69.8 68.9 31.2 32.9 62.3

Table 2. Extra Granular Results For row 1, the backbone of the detection model is randomly initialized. For row 2, 3 and 4, we pre-
trained the model with 32k Radatron unlabeled frames, and fine-tuned it on 13k Radatron labeled frames. Results are averaged for 6 runs.
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Figure 1. Average Precision plotted against the IOU threshold
for Random Initialization vs. Radical. The plot demonstrates a
growing disparity in performance as the IOU threshold increases.

the same direction. Incoming cars are those on the op-
posite lane, and have roughly the opposite direction. Ori-
ented cars are all those in between, such as cars directed
towards the right or left while making a turn. As seen
from Table 1, the most significant portion of Radical’s gain
comes from straight cars. This shows two things; first,
there is large room for improvement regarding the detec-
tion of common scenarios like straight cars on the road
using radars. In this paper, this is achieved through self-
supervised training. Second, high-resolution radar struggles
to accurately detect incoming and oriented cars, even with
the help of pre-training. Therefore, future efforts aiming
at significantly improving radar performance should specif-
ically tackle multipath and secularity in radar, since these
artifacts are the main reasons behind the performance of

APori and APinc lagging behind.

Vision Labels Baseline. In order to compare with pseudo-
labels that are vision-generated, we create another baseline
to compare Radical against and show its results in the last
line of Table 1. In this baseline, we pre-train the model by
training on the whole 63k frames of the dataset with vision-
based pseudo-labels. The vision-based pseudo-labels are
generated by a Stereo RCNN model. The pre-trained net-
work is then fine-tuned with ground-truth human-generated
labels. Although this approach provides some gain (2.8%
in mAP), Radical outperforms this method by 3% in mAP.
In addition to poorer performance, the vision-based labels
from Stereo RCNN model require careful calibration and
projection from vision to radar, while this is not a require-
ment by Radical’s method. Finally, generating reliable vi-
sion labels in the bird’s eye view requires multiple (at least
two) time-synchronized cameras. This is not required by
Radical.

Performance boost against IOU thresholds. We men-
tioned in sec. 6 of the main paper that the gain from Rad-
ical mostly comes from improving the details, leading to
higher gains for AP75 compared to AP50. Here we present
another result that further confirms our assertion. Specifi-
cally, we compare Radical’s average precision performance
with that of supervised training with random initialization,
for different IOU thresholds. Fig. 1 shows the results. As
demonstrated, the gap in performance between Radical and
the baseline increases as the IOU threshold goes up. At
0.5 threshold, the difference is a mere 0.3% improvement
for Radical. However, this increases to more than 10% for
a threshold of 0.8, and more than 15% for thresholds of
0.85 and 0.9. This further demonstrates that Radical sig-
nificantly improves over the baseline in more challenging
scenarios where a higher Intersection Over Union (IOU)



Eval Metric AP 50 (%) AP 75 (%) mAP (%)
Model Split str. ori. inc. overall str. ori. inc. overall str. ori. inc. overall

Radatron [3] original split 93.5 84.0 78.2 91.1 50.8 39.3 38.3 47.8 51.8 43.0 40.7 49.4
Radical(ours) original split 94.3 83.4 77.2 91.5 60.3 32.5 32.3 54.6 55.6 40.0 37.5 52.1

Table 3. Results in the original Radatron dataset split [3] For row 1, the backbone of the detection model is randomly initialized.
For row 2, we pre-trained the model with 32k Radatron unlabeled frames, and fine-tuned it on 13k Radatron labeled frames. Results are
averaged for 6 runs.

λintra 0.2 1 5 20
mAP 62.1± 0.5 62.3± 0.6 61.7± 1.2 59.9± 0.3

Table 4. Results for the hyper-parameter λintra in Radical set-
tings.

threshold is required. This improvement is indicative of
Radical’s ability to refine object detection with greater pre-
cision, particularly in scenarios where a more exact overlap
between the predicted and ground truth bounding boxes is
necessary.
Dataset train/test split. We also present the results for
Radatron and Radical with the original dataset split as in
[3] in Table 3. We find significant boosts in performance
by Radical for straight car conditions, especially in AP 75.
However, we observe that the performance for oriented and
incoming cars are dropped. This might be caused by the
biases in the 32k pre-training dataset, which lacks oriented
and incoming cars scenarios. The hyper-parameters used
are also tuned for the new dataset train/test split. The lower
performance in oriented cars can also be further analyzed
by changing the backbone architecture[4]. We would also
like to mention that the overall variance for the results in
this dataset split is much higher.
Other vision encoders. We also tried a ImageNet[1] pre-
trained ViT[2] as the image encoder, yielding 62.1 ± 0.7
mAP, slightly lower than CLIP image encoder. This shows
the wide applicability of our method.
Other hyper-parameters. We also ablated the hyper-
parameter λintra. Experiments show that λintra = 1 work
the best

3. Implementation Details
Contrastive learning objective choice. All the results pre-
sented in the paper are done in SimCLR-style contrastive
learning objective. Thus, we did not use a momentum en-
coder or a large negative sample queue for the results in our
paper. While the 64 batch size is not large, it proved to work
at the same performance level as a MoCo-like queue-based
implementation in our cross-modal setting experiments (64
batch size and 4k negative queue). We believe that this is
due to the sparsity of radar heatmaps and the size of the
dataset. In fact, changing the batch size from 64 to 8k for a

MoCo-like objective gives similar performance results.

4. Additional Qualitative Results
We show additional randomly sampled qualitative results
samples from our test set in Fig. 2. We also compare Radi-
cal’s performance against Radatron.
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Figure 2. Randomly sampled examples from our test set. (a) Original scene. (b) Radatron (supervised) baseline. (c) Radical.
Groundtruth marked in green and predictions in red.
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