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In this supplementary material, we provide further details
on the proposed approach and present supplementary results.
Additionally, we showcase the qualitative results obtained
from the DSGG method for the scene graph generation and
the panoptic scene graph generation tasks.

1. Dense Scene Graph Generation (DSGG)
In this section, we first provide a summary highlighting
the key contributions of our method, along with compar-
isons to [4] and [7]. Following this, we offer an additional
comparison with scene graph detection methods using the
Visual Genome dataset. Additionally, we present results with
no-graph constraints and conduct a per-class performance
comparison between our method and [11].

1.1. Comparison to [4] and [7]
The primary factor contributing to achieving state-of-the-art
performance while significantly reducing parameters is that
DSGG does not depend on a node-based matching approach
to acquire queries, which is customary in all transformer-
based approaches (including [4] and [7]). In contrast, DSGG
employs sub-graph matching as a guiding mechanism to ac-
quire graph-aware queries, thereby enabling direct learning
of the scene graph and ultimately leading to a compact model
with improved performance.

Specifically, in [4], each entity has K distinct queries
for K triplets, and the attention mask is derived from the
maximum attention of nK features using softmax. Con-
versely, in DSGG, each entity is represented by a unique
graph-query for all its relations, and the attention is learned
via sigmoid to accommodate multiple relations among all
the objects. DSGG exhibits improvements of 4.9% & 6.6%
in mR@50/100 respectively, as shown in Table T1.

In [7], an additional [rln]-token is learned alongside N
[obj]-tokens to train model. Moreover, a major constraint of
their approach is its dependence on predicted objects before
relation classification among them (Sec 3.4 in [7]), a process
distinct from the sub-graph matching that is employed in
DSGG. Furthermore, as in Table T1, DSGG shows enhance-
ments of 10.9% and 14.8% in mR@50/100, respectively.

Scene Graph Detection (SGDet)
Method R@50 R@100 mR@50 mR@100 M@50 M@100

Px2Graph [6] 15.5 18.8 - - - -
FCSGG [5] 21.3 25.1 3.6 4.2 12.5 14.7

CoRF+T [1] 18.6 - 3.9 - - -
RelTR [2] 27.5 30.7 10.8 12.6 - -

Relationformer [7] 28.4 31.3 9.3 10.7 18.9 21.0
TraCQ [3] 28.3 35.7 13.8 14.6 - -

RepSGG [4] † 29.6 34.8 9.3 11.4 19.5 23.1
RepSGG [4] 12.1 14.6 15.3 18.9 13.7 16.8

DSGG (ours) † 32.9 38.5 13.0 17.3 23.0 28.0
DSGG (ours) 26.5 32.9 20.2 25.5 23.4 29.2

Table T1. Additional Evaluation on the Visual Genome test set.
The references to the cited works will be added in the final paper.

1.2. Additional comparisons on the VG dataset
In the paper, we included only a representative selection
of recent works. Nevertheless, we have included results
from [1–7], in Table T1. Additionally, it is worth noting
that DSGG outperforms all VG baseline methods in terms
of mR@K and M@K metrics.
1.3. Ng-Recall Performance
Table T2 presents DSGG attaining state-of-the-art perfor-
mance even on the no-graph constraint metric. Note that
the DSGG attains a notable improvement on the no-graph
constraint mean recall metric.

ng-Recall ng-Mean Recall
Method @20 @50 @100 @20 @50 @100

MOTIFS [10] - 30.5 35.8 - - -
FCSGG [5] 19.6 26.8 32.1 4.2 6.5 8.6

Relationformer [7] 22.9 31.2 36.8 - - -
DSGG (ours) 23.0 32.5 39.4 9.8 15.2 18.1

Table T2. SGDet: No-graph constraint results on the VG test set.

1.4. Per-class Performance
Figure S1 compares the per-class mean-recall (mR@100)
performance of our method and HiLo [11] using the Resnet-
50 backbone. Note that our approach demonstrated superior
mean-recall for 45 categories, yielded similar outcomes for
8 categories, and only exhibited lower performance for 3
categories (’beside’, ’in front of’, and ’on back of’). In addi-
tion to that, our method outperformed the baseline method
in both rare and non-rare categories.
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Figure S1. Per-Class Performance on the PSG dataset. Left column shows the predicate names and their frequency in the test split. Right
column shows the per-category results of the HiLo method [11] in blue color and our method results in red color.



2. Qualitative Performance

In this section, we provide the qualitative results of the pro-
posed DSGG method on both the scene-graph generation
and the panoptic scene-graph generation datasets.

2.1. Panoptic Scene Graph Generation

In this section, we show the qualitative results of our method
on the PSG [9] dataset. Because of limited space, we only
present the top 9 triplets along with their corresponding
subject and object masks. The subjects are highlighted in
blue color and the objects are highlighted in red color. The
<subject, predicate, object> relationships are shown in the
white color. Figure S2 shows that our method can predict
multiple simultaneous relationships among the same subject
and object. Specifically, our method predicts that in this
image a) the sky is over the sea, b) the person is standing on
the surfboard, c) the sky is over the person, d) the person is
playing the surfboard, e) the sky is over the sea, f) sky over
the surfboard, g) person touching the sea, h) person on the
sea, and i) person is playing with the surfboard. Figure S3
contains a) the dog is biting the frisbee, b) the dog is playing
with the frisbee, c) the dog is running on the grass, d) the
dog playing frisbee, e) the dog is walking on the grass, f)
the dog is standing on the grass, g) the dog is catching the
frisbee, h) the dog is sitting on the grass, and i) the dog is
on the grass. In Figure S4, our method predicts a) the sky is
over the grass, b) the sky is over the tree, c) the kite is flying
over the sky, d) the sky is over the kite, e) the sky is over
the person, f) the person is pulling the kite, g) the person
is standing on the grass, h) the sky is over the house, and
i) the person is holding the kite. Figure S5 shows that a)
the person swinging a baseball bat, b) the person wearing a
baseball glove, c) the person holding a baseball bat, d) the
person standing on the playing field, e) the person standing
on the dirt, f) the person wearing the baseball glove, g) the
person is about to hit the sports ball, h) the person running
on the playing field, and i) the person looking at the person.

2.2. Scene Graph Generation

This section shows our method results on the Visual
Genome [8] dataset. Figures S6, S7, S8, and S9 show the
ground truth, predicted entities, and their relationships as a
bipartite graph for easy visualization. Note that our method
can generate more meaningful relationships.

It is worth mentioning that the PSG dataset (as in Fig-
ure S2, S3, S4, and S5) has minimal noise, dense relations,
and segmentation masks for enhanced model learning, while
the VG dataset is sparse, noisy, includes object-part relation-
ships, and lacks complete annotations. The ground truth in
the qualitative results demonstrates this effect.
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Figure S2. Qualitative Performance on the PSG dataset. The subject, object, and relationship triplets are shown in blue, red, and white
colors respectively. Specifically, our method predicts that in this image a) the sky is over the sea, b) the person is standing on the surfboard,
c) the sky is over the person, d) the person is playing the surfboard, e) the sky is over the sea, f) sky over surfboard, g) person touching the
sea, h) person on the sea, and i) person is playing with the surfboard.



Figure S3. Qualitative Performance on the PSG dataset. The subject, object, and relationship triplets are shown in blue, red, and white
colors respectively. Specifically, our method predicts that in this image a) the dog is biting the frisbee, b) the dog is playing with the frisbee,
c) the dog is running on the grass, d) the dog playing frisbee, e) the dog is walking on the grass, f) the dog is standing on the grass, g) the
dog is catching the frisbee, h) the dog is sitting on the grass, and i) the dog is on the grass.



Figure S4. Qualitative Performance on the PSG dataset. The subject, object, and relationship triplets are shown in blue, red, and white
colors respectively. Specifically, our method predicts that in this image a) the sky is over the grass, b) the sky is over the tree, c) the kite is
flying over the sky, d) the sky is over the kite, e) the sky is over the person, f) the person is pulling the kite, g) the person is standing on the
grass, h) the sky is over the house, and i) the person is holding the kite.



Figure S5. Qualitative Performance on the PSG dataset. The subject, object, and relationship triplets are shown in blue, red, and white
colors respectively. Specifically, our method predicts that in this image a) the person swinging a baseball bat, b) the person wearing a
baseball glove, c) the person holding a baseball bat, d) the person standing on the playing field, e) the person standing on the dirt, f) the
person wearing the baseball glove, g) the person is about to hit the sports ball, h) the person running on the playing field, and i) the person
looking at the person.



(a) Ground-truth objects with class labels (b) Detected objects with class labels and score

(c) Ground-truth scene graph

(d) Detected dense scene-graph using DSGG

Figure S6. Qualitative Performance on the Visual Genome dataset. In the bipartite graph, the left side represents the subjects, while the
right side represents the objects. The edges in the graph represent the top-20 detected relations between the subjects and objects.



(a) Ground-truth objects with class labels (b) Detected objects with class labels and score

(c) Ground-truth scene graph

(d) Detected dense scene-graph using DSGG

Figure S7. Qualitative Performance on the Visual Genome dataset. In the bipartite graph, the left side represents the subjects, while the
right side represents the objects. The edges in the graph represent the top-20 detected relations between the subjects and objects.



(a) Ground-truth objects with class labels (b) Detected objects with class labels and score

(c) Ground-truth scene graph

(d) Detected dense scene-graph using DSGG

Figure S8. Qualitative Performance on the Visual Genome dataset. In the bipartite graph, the left side represents the subjects, while the
right side represents the objects. The edges in the graph represent the top-20 detected relations between the subjects and objects.



(a) Ground-truth objects with class labels (b) Detected objects with class labels and score

(c) Ground-truth scene graph

(d) Detected dense scene-graph using DSGG

Figure S9. Qualitative Performance on the Visual Genome dataset. In the bipartite graph, the left side represents the subjects, while the
right side represents the objects. The edges in the graph represent the top-20 detected relations between the subjects and objects.
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