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In the supplementary document, we will introduce the following contents: 1) details of TPS transformation (Sec. A);
2) more details of our proposed framework (Sec. B), including the motion decoupling module (Sec. B.1), the latent motion
diffusion model (Sec. B.2), the refinement network (Sec. B.3), the optimal motion selection module (Sec. B.4), and other
implementation details (Sec. B.5); 3) the selection of objective metrics (Sec. C); 4) more details and analysis of comparison
to existing methods (Sec. D); 5) results and analysis of the ablation study (Sec. E); 6) capability of generating long gesture
videos (Sec. F); 7) user study details (Sec. G); 8) analysis of the robustness and effectiveness of objective metrics (Sec. H);
9) generalization ability analysis (Sec. I); 10) time and resource consumption (Sec. J); 11) limitations and future work
(Sec. K); 12) dataset license (Sec. L). Since more mathematical expressions are included, we choose a single-column format
in this supplementary document instead of two-column for readability. All demos, code, and more resources can be found at
https://github.com/thuhcsi/S2G-MDDiffusion.

A. Details of TPS Transformation

In the main paper, we employ TPS transformation [3] to establish pixel-level optical flow relying solely on sparse keypoint
pairs from driving and reference images, thereby achieving precise control over the motion of human body regions. This is
the foundation of our approach to decoupling motion while retaining crucial appearance information. Here we give a more
detailed explanation of TPS transformation.

TPS transformation is a type of image warping algorithm. It takes as input corresponding N pairs of keypoints
(pDi , pSi ), i = 1, 2, . . . , N (referred to as control points) from a driving image D and a source image S, and outputs a
pixel coordinate mapping Ttps (·) from D to S (referred to as backward optical flow). This process is grounded in the foun-
dational assumption that the 2D warping can be emulated through a thin plate deformation model. TPS transformation seeks
to minimize the energy function necessary to bend the thin plate, all while ensuring that the deformation accurately aligns
with the control points, and the mathematical formulation is as follows:
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where pDi and pSi denotes the ith keypoints paired in D and S. According to [3], it can be proven that TPS interpolating
function is a solution to Eq. (A1):
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where p = (x, y)⊤ is the origin coordinate in D, and pDi is the ith keypoint in D. U(r) = r2 log r2 is a radial basis function.
Actually, U(r) is the fundamental solution of the biharmonic equation [5] that satisfies
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where the generalized function δ(0,0) is defined as

δ(0,0) =

{
∞, if (x, y) = (0, 0)

0, otherwise
, and
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δ(0,0)(x, y) dxdy = 1, (A4)

which means that δ(0,0) is zero everywhere except at the origin while having an integral equal to 1.
We use pXi = (xX

i , yXi )⊤ to denote the ith keypoint in image X (i.e. D or S), and denote:

rij =
∥∥pDi − pDj

∥∥ , i, j = 1, 2, . . . , N,
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Then we can solve the affine parameters A ∈ R2×3 and TPS parameters wi ∈ R2×1 as:

[w1, w2, · · · , wN , A]
⊤
= L−1Y. (A5)

In fact, in Eq. (A2), the first term A
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introduces non-linear distortions for elevating or lowering the

thin plate. With both the linear and nonlinear transformations, TPS transformation allows for precise deformation which is
important to describe the motion without discarding crucial appearance information in our framework.

B. More Details of Our Proposed Framework
B.1. Motion Decoupling Module

Training losses. The motion decoupling module is trained end-to-end in an unsupervised manner. From previous works
[29, 30, 42], we use a pretrained VGG-19 network [31] to calculate the perceptual construction loss in different resolutions
as the main driving loss:

Lper =
∑
j

∑
i

∣∣∣VGG19i (DSj(D))− VGG19i(DSj(D̂))
∣∣∣ , (B6)

where VGG19i means the ith layer of the VGG-19 network, while DSj represents j downsampling operations. Also, equiv-
ariance loss is used to enhance the stability of the keypoint predictor as:

Leq =
∣∣∣Ekp(Ã(S))− Ã (Ekp(S))

∣∣∣ , (B7)

where Ekp is the keypoint predictor, and Ã is a random geometric transformation operator.
In addition, as introduced in [42], we also encode D into feature maps with the encoder of the image synthesis network,

compared with warped reference feature maps to calculate the warping loss:

Lwarp =
∑
i

∣∣∣T̃ −1 (Ei(S))− Ei(D)
∣∣∣ , (B8)

where Ei is the ith layer of the encoder of the image synthesis network, and T̃ −1 denotes the inverse function of the estimated
optical flow, i.e. the forward optical flow from R to D.

The final loss is the sum of the above terms:

Ltps = Lper + Leq + Lwarp. (B9)

B.2. Latent Motion Diffusion Model

Framework. The framework of our latent motion diffusion model is based on DDPM [8], where diffusion is defined as a
Markov noising process. x0 ∼ p(x) is sampled from the real data distribution (i.e. x0 is a sequence of latent motion features
drawn from a real gesture video). Given constant hyper-parameters αt ∈ (0, 1) decreasing with t, the forward diffusion
process is to add Gaussian noise to the sample:

q (xt | xt−1) = N (
√
αtxt−1, (1− αt) I) . (B10)



When the maximum time step T is sufficiently large and αt is small enough, we can use standard Gaussian distribution
N (0, I) to approximate xT . This indicates that it is possible to estimated real posterior q (xt−1 | xt) following the reverse
denoising process:

pθ (xt−1 | xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t)) , (B11)

where µθ(·) and Σθ(·) mean estimating the mean and covariance via a neural network with learnable parameters θ. From
DDPM [8], the network predicts the noise ϵθ(xt, t) and thus we can use µθ (xt, t) = 1√

αt

(
xt − 1−αt√

1−ᾱt
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)
added

by randomly sampled noise to estimate xt−1. In our context, we take speech audio and the seed motion feature of the
reference frame as conditions c, and aim to model the conditional distribution pθ(x0|c) by gradually removing the noise.
Following [24], we predict x0 itself instead of noise ϵ. The neural network of the diffusion network can be represented as
x̂0 = G(xt, t, c).

Training losses. We follow [8] to use simple objective as the first term of losses:

Lsimple = Ex0∼q(x|c),t∼[1,T ]

[
∥x0 − G (xt, t, c)∥22

]
. (B12)

Besides, as mentioned in the main paper, we use the velocity loss and the acceleration loss to constrain the physical
attributes of the motion features that describe the trajectories of the keypoint movements. Velocity and acceleration are
respectively defined as the first and second-order time derivatives of the keypoint positions, and here, differential methods
are employed to represent derivatives [32, 33]:
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The final training loss is as follows:

Ldiff = Lsimple + λvelLvel + λaccLacc. (B15)

Guidance. Following [33], we train our diffusion model with classifier-free guidance. In training, we randomly mask the
speech audio with a certain probability of 25%, i.e. replacing the condition c = {a, x(0)

0 } with c∅ = {∅, x
(0)
0 }. Then, we

can strike a balance between diversity and fidelity by weighting the two results with γ:

x̂0 = γG (xt, t, c) + (1− γ)G (xt, t, c∅) , (B16)

where we can use γ > 1 for extrapolating to enhance the speech condition.

B.3. Refinement Network

Architecture details. Inspired by [23], we use a Unet-like [26] architecture to restore missing details of synthesized im-
age frames. In specific, we use eight “convolution - LeakyReLU - batch norm” downsampling blocks and
eight “upsample - convolution - LeakyReLU - batch norm” upsampling blocks with long skip connec-
tions, which prevent the information loss during downsampling while maintaining a large receptive field. Additionally,
we insert two residual blocks [40] into the final two layers respectively, whose shallow architecture leads to a small receptive
field and processes the feature maps in a sliding window manner. Simultaneously possessing large and small receptive fields
enables the refinement network to capture both global and local information, thus better recovering missing details. Also,
to ensure authenticity, we employ a patch-based discriminator [23] trained with GAN discriminator loss LD for adversarial
training. Both the ground truth and refined image are converted into feature maps, with each element being discriminated as
real or fake.

Training losses. Firstly, we train the refinement network with the common L1 reconstruction loss. Note that, as mentioned
in the main paper, we utilize MobileSAM [41] to segment hands and the face to get the masks, and assign larger weights to
both hands, face, and occluded areas using the masks in L1 reconstruction loss:

Lrec = Lvalid + λoccLocc + λhandLhand + λfaceLface, (B17)



where we use the complement of the occlusion masks from the optical flow predictor to compute Lvalid.
Then similar to [17, 23, 35], VGG-16 [31] is used to compute the perceptual loss and style loss in the feature space as:

Lper =
∑
i

∣∣∣VGG16i(D)− VGG16i(D̂ref )
∣∣∣ , (B18)

Lstyle =
∑
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∣∣∣VGG16i(D) · [VGG16i(D)]⊤ − VGG16i(D̂ref ) · [VGG16i(D̂ref )]
⊤
∣∣∣ , (B19)

where D̂ref and D represent the refined image frame and the real image frame respectively. VGG16i means the ith layer of
the VGG-16 network, and we select i = 5, 10, 17 in this work. In addition, following [17, 23], the total variation (TV) loss is
used as:
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where D̂i,j
ref denotes the (i, j) pixel of the refined image frame.

The final loss is the weighted sum of the above terms, along with GAN generator loss LG:

Lref = Lrec + λperLper + λstyleLstyle + λtvLtv + λGLG. (B21)

B.4. Optimal Motion Selection Module

We employ a segment-wise generation approach to generate motion feature sequences of arbitrary length. Inspired by [14],
starting from the second segment, leveraging the diversity generation capability of diffusion, we generate P candidates for
each segment conditioned on the current audio and the end frame of the preceding segment. The scores are computed using
the last five frames of the preceding segment and the first five frames of the candidate.

Specifically, by reorganizing the motion features back into keypoint positions, we calculate two scores: 1) Position co-
herency score calculates the L1 distance between the mean positions of the preceding segment and all candidates over five
frames. 2) Velocity consistency score calculates the angle of velocity directions in average between the preceding and candi-
date segments over five frames, where velocity is computed through the differential of position. These two scores are summed
to obtain the final score. A lower final score indicates fewer abrupt changes in position and velocity direction between two
segments, thereby reducing flickers and jitters. So the candidate segment with the lowest score is chosen to extend the motion
feature sequence. The frames at the transition points are eventually filled using cubic spline interpolation.

B.5. Other Implementation Details

We train our overall framework on four speakers jointly in three stages. 1) For the motion decoupling module: The number
of TPS transformations K is set to 20, each with N = 5 paired keypoints. We select ResNet18 [7] as the keypoint predictor
for its simplicity and modify its output dimension to 20× 5× 2 to match the number and dimension of keypoints. Following
[42], the optical flow predictor and the image synthesis network are 2D-convolution-based and produce 64× 64 weight maps
to generate optical flow and four occlusion masks of different resolutions (32, 64, 128, 256) to synthesize image frames. We
conduct training using Adam optimizer [10] with learning rate of 2× 10−4, β1 = 0.5, β2 = 0.999. 2) For the latent motion
diffusion model: Keypoints are gathered and unfolded into the motion feature x ∈ R200 for each frame. Motion features
and audios are clipped to M = 80 frames (3.2s) with stride 10 (0.4s) for training. The 35-dimension hand-crafted audio
features include MFCC, constant-Q chromagram, tempogram, on-set strength and on-set beat, which are concatenated with
1024-dimension WavLM features to form a ∈ R1059. For Eq. (B15), we set λvel = λacc = 1 and use Adan optimizer [36]
with learning rate of 2× 10−4 and 0.02 weight decay for 3,000 epochs training. The maximum sampling step T is 50. 3) For
the refinement network: We set λocc = 3, λhand = λface = 5 in Eq. (B17). Following the hyper-parameter search results
in [17], we set λper = 0.05, λstyle = 120, λtv = 0.1, and λGAN = 0.1 in Eq. (B21). Adam optimizer [10] with learning rate
of 2 × 10−4, β1 = 0.5, β2 = 0.999 is used for the refinement generator and learning rate of 4 × 10−5 for the discriminator.
The whole framework is trained on 6 NVIDIA A10 GPUs for 5 days. In inference, γ in Eq. (B16) is set to 2 for extrapolating
to augment the speech condition. Candidate number P is set to 5 for the balance between quality and inference time.

C. Selection of Objective Metrics
As a relatively unexplored task, co-speech gesture video generation lacks effective means of objective evaluation. Pio-

neering work ANGIE [18] simplifies the evaluation process by degrading their generation framework to 2D human skeletons



Table D1. Subjective evaluation results on test set with two generation schemes for MM-Diffusion. Bold indicates the best and
underline indicates the second. Results of MOS are presented with 95% confidence intervals. Only the favorable results of MM-Diffusion-
C are reported in the main paper.

Name Subjective evaluation
Realness ↑ Diversity ↑ Synchrony ↑ Overall quality ↑

Ground Truth (GT) 4.76±0.05 4.70±0.06 4.77±0.05 4.73±0.06
ANGIE 2.07±0.08 2.53±0.08 2.19±0.08 2.00±0.07

MM-Diffusion-D 1.63±0.09 1.98±0.09 1.54±0.08 1.46±0.08
MM-Diffusion-C 1.77±0.08 2.02±0.09 1.69±0.08 1.47±0.07

Ours 3.79±0.08 3.91±0.07 3.90±0.08 3.77±0.07

before leveraging the objective metrics common in skeleton generation, which, however, only assesses the performance of
the generation module in structural skeletons without considering the effectiveness of the entire framework for gesture video
generation. [43] employs metrics such as LPIPS popular in image evaluation and MOVIE for video evaluation to assess ges-
ture reenactment. However, these general visual metrics only operate in the pixel or pixel-derived feature space, neglecting
the crucial body movements in gesture videos. Therefore, we propose to use both motion and video-related metrics to evalu-
ate gesture videos. Specifically, we use Fréchet Gesture Distance (FGD) [38], Diversity (Div.) [19], and Beat Alignment
Score (BAS) [13] to evaluate the motion quality, and use Fréchet Video Distance (FVD) [34] to evaluate the video quality.

Details of motion-related metrics. We first extract 2D human poses with off-the-shelf pose estimator MMPose [28].
Extracting poses after generating gesture videos avoids the degradation of our original generation framework, allowing for
effective measurements of the gesture motion quality in the videos. For the feasibility of calculating metrics, we performed
normalization on raw poses: 1) We preserve 13 keypoints for the upper body and 21 keypoints for each hand, 55 keypoints
in total [15, 28]. 2) We align the wrist points from body detection with those from hand detection. 3) For frames where the
body is not detected, all keypoints are defined as centered at (128, 128). 4) For frames where hands are not detected, 21× 2
hand keypoints are assigned to the corresponding body wrist points.

Then, BAS can be directly computed using the audio and the normalized poses. For FGD and Diversity metrics, we
follow [22] to train an auto-encoder on pose sequences from PATS train set to encode poses into a feature space. During
training, pose sequences are clipped to 80 frames without overlapping. Each clip is then encoded into a 32-dimension
feature. For FGD, we compute the Fréchet Distance between features of generated videos and all real videos, including both
train set and test set. For Diversity, we calculate the average Euclidean distance of generated videos in the feature space
following [19].

D. Comparison to Existing Methods

As stated in the main paper, we compare our method with ANGIE [18] and MM-Diffusion [27]. For both our method
and ANGIE, we use the audio and the initial frame image from PATS test set as inputs to generate corresponding 25fps
gesture videos with a resolution of 256 × 256. Given that MM-Diffusion is trained solely conditioned on audio segments
to generate 1.6s video segments of 10fps, we implement it with two generation schemes: 1) directly sampling long noise
to generate videos of corresponding audio length (MM-Diffusion-D) and, 2) generating 1.6s segments for concatenation
(MM-Diffusion-C). For both schemes, the generated gesture videos are resampled to 25fps. Additionally, considering that
our method and MM-Diffusion-C generate fixed-length sub-clips (3.2s and 1.6s respectively) to form the full videos, both
ground truth and generated videos are cropped to multiples of 3.2s for fair comparison.

User study results, including both of the two generation schemes of MM-Diffusion, are presented in Tab. D1. Due to space
constraints, only the favorable results (MM-Diffusion-C) are reported in the main paper as “MM-Diffusion”. It is important
to note that MM-Diffusion does not use the initial frame image as a condition, thus lacking control over the appearance of
the speaker in the generated videos, resulting in inconsistent speakers between concatenated segments. So, in the user study,
participants are instructed to evaluate the videos generated by MM-Diffusion-C only within each 1.6s segment, neglecting the
overall quality of the full-length video. This, in fact, is a lenient evaluation for disregarding the inherent limitation of MM-
Diffusion in generating consistently long videos. Nonetheless, the experimental results still demonstrate the superiority of
our method over MM-Diffusion in all dimensions. Despite some setting differences, this concessive evaluation is sufficient to
prove that our method surpasses MM-Diffusion when generating short segments in gesture-specific scenarios, not to mention
the capability of our method to generate consistent long gesture videos.
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Figure E1. Visualization results of the ablation study. Replacing TPS with MRAA leads to ghost effects (yellow boxes). WavLM brings
greater amplitude of hand motion (dashed boxes) given an impassioned speech. Refinement restores the details especially in hands and the
face (red and green boxes).

Constrained by computational resources and referring to the result of our user study in Tab. D1, only the favorable MM-
Diffusion-C is used to generate 480 test videos for objective evaluation and reported as “MM-Diffusion” in the main paper.

E. Ablation Study
Visualization results of the ablation study are shown in Fig. E1, where an impassioned speech is given as the condition.

From the first column, we observe that the generated videos exhibit severe ghost effects (labeled by yellow boxes) when
we replace the TPS-based motion features with MRAA [30]. We will give an explanation in the following part. According
to [30], MRAA is a PCA-based affine transformation that represents motion features as the mean µ and the covariance Σ
of the probability distribution of body regions. While it is appropriate to infer µ as the region translation from speech, the
interaction between speech and the region shape represented by Σ is quite unclear. Unlike ANGIE [18] which uses a cross-
condition GPT to connect Σ with µ and speech, our diffusion model emphasizes the interactions between speech and motion



Table F2. Results of generating long gesture videos. Bold indicates the best and underline indicates the second.

Name Effective duration ↑
Ground Truth (GT) 27.8s

ANGIE 4.1s
LN Samp. 3.5s

Concat. 15.9s
Ours 21.0s

features, with less focus on relating Σ to µ. Thus the prediction of Σ is unstable. Although we impose constraints on Σ to
be symmetric positive definite using Cholesky decomposition as mentioned in [18] for valid gestures, it still tends to output
near-singular matrices, resulting severe errors in heatmaps for the estimation of the optical flow and occlusion masks. This,
in turn, causes undesirable visual effects.

The second column shows the results of removing WavLM [4] features with only hand-crafted audio features used. Given
an impassioned speech, the generated gestures with WavLM display greater amplitude and heightened intensity, because
WavLM contains rich high-level information such as emotions and semantics [37]. The final three columns of Fig. E1 show
that textures are restored after refinement, especially in hands and the face.

Please refer to our homepage for more visualization results of comparison with other methods and the ablation study.

F. Capability of Generating Long Gesture Videos
To better assess the effectiveness of the optimal motion selection module and the capability of our framework to generate

long gesture videos, we conduct another user study following [14]. We sample 10 long audios from the original PATS dataset
as conditions to generate videos of 28s, and compare the generated results of 1) our complete framework, 2) long noise
sampling (LN Samp.), 3) direct concatenation (Concat.), 4) ANGIE, and 5) the ground truth. 20 participants are asked to
evaluate the effective duration of the videos, i.e. to decide how many seconds of the videos are effective. The average effective
duration for each method is shown in Tab. F2. The results show that, although based on an easy-to-make hand-crafted rule,
the optimal motion selection module benefits our method to generate longer videos with better coherency and consistency
compared to only seed motion used and other methods. Directly sampling long noise and the autoregressive generation
approach of ANGIE both face challenges in generating effective videos over 10 seconds.

G. Details of User Study
The user study is conducted by 20 participants with good English proficiency, involving 15 males and 5 females. Each

participant is remunerated about 15 USD for a rating of 40-50 minutes, which is approximately at the average wage level [39].
Screenshots of the rating interface used for comparison, the ablation study, and the evaluation of long video generation are
presented in Fig. G2.

H. Robustness and Effectiveness of Objective Metrics
From the main paper, we observe: 1) ANGIE [18] achieves higher BAS than ours. 2) Refinement brings lower BAS. 3)

Sampling long noise and concatenation strategies have similar BAS. All these observations regarding BAS are inconsistent
with subjective perceptions. Actually, BAS considers the distance between each audio beat with its nearest gesture beat,
while gesture beats are defined as local velocity minima of 2D pose sequences filtered with a Gaussian kernel [13]. In
practice, we encounter unavoidable inter-frame jitters when extracting 2D poses for evaluation with the off-the-shelf pose
estimator. Tremors such as those in ANGIE, blurred images without refinement, or almost stationary long noise sampling
results could amplify the jitters of estimated poses and cause incorrect identification as denser gesture beats, reducing the
distance between gesture and speech beats and thus incorrectly increasing BAS, which can be seen from Fig. H3. In summary,
BAS is susceptible to unrelated factors, making it a less robust objective metric. FGD, Diversity, and FVD are calculated in
the feature space, making them somewhat more robust compared to BAS.

Another interesting finding is that despite other metrics of our method being closer to the GT, FGD still exhibits a no-
ticeable discrepancy. However, user study results strongly indicate the authenticity of our generated motion. One plausible
explanation is that for FGD, we take the entire data, including the training and testing sets, as the real reference to calculate
distribution distances. Given the rich diversity of gestures, there are inherent distribution gaps between the training and test-
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(a) User study interface for comparison and ablation.

(b) User study interface for rating effective duration.

Figure G2. Screenshots of the user study interface.

ing sets. Our model learns the data distribution from the training set, slightly deviating from the entire, while the GT of the
testing set constitutes a portion of the overall distribution. This results in a noticeable difference in FGD. Referring to the
training distribution reduces the difference (GT: 8.976 to 10.327 vs. ours: 18.131 to 13.285), providing supporting evidence.
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Figure H3. Examples of velocity-frame curves of motion sequences generated by each method for BAS analysis. For clear visualization,
velocity is normalized and displayed without overlap. Dots represent gesture beats and dashed lines signify speech beats. “Concat.” is
short for concatenation. “LN Samp.” is short for long noise sampling. “LN Samp.” and “ANGIE” exhibit more gesture beats but are not
aligned with speech beats.

Actually, previous studies [11, 12] indicate that co-speech gesture generation still lacks objective metrics perfectly consis-
tent with human subjective perception. To summarize the above, we have to demonstrate that subjective evaluation remains
the gold standard for co-speech gesture video generation just like any other technology in the field of human-machine inter-
action [11].

I. Generalization Ability
Gestures vary greatly between different speakers, so previous work typically trains an independent model for each person

to capture individual styles. In contrast, we train a unified model jointly with the four speakers to ensure the scalability of
our method. Experimental results indicate that even in this more challenging setting, our approach still generates gestures
matching individual styles. Besides, we notice joint training brings about generalization ability to the speech of unseen
speakers, which can be seen on our homepage. However, it is still hard to generalize to any given portrait at present. Yet,
given two critical facts: 1) our method can animate unseen dressing appearances of the four given speakers, for the dataset
contains various appearances of the same speaker, and 2) efforts like [9] on extensive multi-person datasets show stronger
generalization ability to unseen portraits, we believe that our approach exhibits generalization potential, and a high-quality
multi-speaker gesture video dataset may help to enhance it, which will be explored in our future work.

J. Time and Resource Consumption
Tab. J3 indicates that our training and inference time are comparable to ANGIE [18] and significantly shorter than MM-

Diffusion [27]. Therefore, to the best of our knowledge, we achieve an optimal trade-off between time consumption and
generation quality with distinct superiority in the latter. Although motion decoupling takes longer time, it greatly reduces
the overall time and resource commitment compared to MM-Diffusion and other video generation works, e.g. [9] taking
14 days on 4 NVIDIA A100 GPUs for training1, providing a relatively efficient solution. Notably, our proposed diffusion
model in the latent motion space achieves competitive generation results with relatively less time consumption, highlighting
its necessity in the audio-to-motion process. Undeniably, repetitive diffusion denoising introduces extra inference time, and
we will further explore methods like LCM [20] and Flow Matching [16] for acceleration.

Table J3. Time consumption comparison of training (6 NVIDIA A10 GPUs) and inference (1 NVIDIA GeForce RTX 4090 GPUs).

Name Training Training Breakdown
Inference

(Generate a video of ∼10 sec)
ANGIE ∼5d Motion Representation ∼3d + Quantization ∼0.2d + Gesture GPT ∼1.8d ∼30 sec

MM-Diffusion ∼14d Generation ∼9d + Super-Resolution ∼5d ∼600 sec
Ours ∼5d Motion Decoupling ∼3d + Motion Diffusion ∼1.5d + Refinement ∼0.5d ∼35 sec

1Experimental results from our reproduced code instead of official resources.

https://github.com/thuhcsi/S2G-MDDiffusion


K. Limitations and Future Work

As research towards a relatively unexplored problem, there is still room for improvements in the following areas.
Despite significant superiority to existing methods, our generated videos still exhibit some accuracy issues of blurs and

flickering, especially in hand details. This arises from the intricate structures of hands, characterized by varying movements
like intersections and overlaps, which actually presents an unresolved challenge in the field of image and video generation [9,
25]. TPS-based motion decoupling effectively captures curved hand contours, making our method more adaptable to complex
hand shapes than ANGIE [18], but still struggles to model structural details. The limited presence of hands in the frame
drawing insufficient attention, coupled with the relatively weak inpainting capability of the image synthesis network, also
leads to inaccurate hands. In addition, we observe that PATS dataset sourced from in-the-wild videos is of limited quality
with noticeable hand motion blur, influencing the network’s performance to some extent. Therefore, in our future work, we
will: 1) refine our method, e.g. prioritizing attention to hands and inpainting occlusion with more powerful pre-trained image
generation models like SD model [25], and 2) collect high-quality gesture video data with clearer representations of hands to
further enhance the generation quality.

Our current solution is unable to effectively synthesize the lip shape because there is a gap in the relationship between lips
and gestures with speech. A unified framework for generating co-speech gestures and the lip shape simultaneously remains
a valuable research problem, which we will explore in future work. In some showcases of the supplementary video, we use
the off-the-shelf Wav2Lip [21] to synthesize lip shapes. Note that, the lip shape is not within the scope of this work, and
generating lip shapes is just for better visual effects in the demo video.

For videos of bad quality, the accuracy of 2D poses from the pose estimator is compromised, leading to significant uncer-
tainty when calculating all objective metrics regarding motion, especially BAS. Up until now, human subjective evaluation
remains the most effective means of assessing generated gesture videos. Further exploration is needed to develop more robust
and effective objective metrics.

L. Dataset License

We download the YouTube videos and perform preprocessing according to the video links in the metadata provided by
the PATS dataset [1, 2, 6]. Video license “CC BY - NC - ND4.0 International” allows for non-commercial use. Although the
video data includes personal identity information, we adhere to the data usage license, and our processed data, models, and
results will be used only for academic purposes and not be permitted for commercial use.
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