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A. Discussion About Coarse SfM Accuracy
We conduct extensive experiments to show that our coarse
SfM is robust and can support the latter refinement stage.
We also emphasize that the coarse SfM phase is NOT to
guarantee accuracy. Instead, it sacrifices accuracy for bet-
ter completeness (registration rate). To this end, we use
quantized detector-free matches, where the pixel threshold
is relatively large in this phase (i.e., 4 pixels by default in
COLMAP) in both of the matching RANSAC and mapping.
Therefore, a sufficient number of images can be registered
with an acceptable pose error, which serves as the initial-
ization of the refinement phase for higher pose accuracy.
Nevertheless, Tab. 1 shows that the coarse SfM alone can
achieve competitive accuracy compared with the state-of-
the-art detector-based method on the IMC dataset, resulting
in consistently superior results after refinement.

Type Method AUC@3◦ AUC@5◦ AUC@10◦ AUC@20◦

Detector-Based (Reference) R2D2 + NN + PixSfM 32.44 42.55 55.01 65.32
SP + SG + PixSfM 46.30 58.43 71.62 80.83

Detector-Free Ours Coarse SfM (Quant. to 8×8) 38.97 51.67 66.72 77.84
Ours full 46.94 59.14 72.44 82.45

Table 1. Results of coarse SfM’s pose accuracy on IMC 2021
dataset.

B. Discussion and Insight about Using Our
Multi-View Feature Transformer in PixSfM

Since the proposed multi-view transformed feature brings
improvement to our framework, an interesting exploration is
to integrate it into PixSfM [16] to further bring improvement.
However, we find that the problem exists with the combi-
nation of these two technicals where further developments
are needed. The reason is that PixSfM utilizes extracted
features to select the reference view for BA, according to
Eq. 6, 7 in their paper. In contrast, extracting our multi-view
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transformed features needs the reference view determined
before extraction as shown in the main paper’s Fig. 5, which
introduces conflict when applied in PixSfM. Similarly, us-
ing the multi-view transformer in PixSfM’s KA phase also
faces the problem of missing reference view determination
before feature extraction. Therefore, direct combining is not
straightforward where dedicated modifications are needed.

We emphasize that combining our multi-view trans-
formed features with PixSfM is not the intention of our
paper. The motivation to propose a new refinement module
that “go back” to geometric-BA instead of directly using
PixSfM’s featuremetric-BA is for the purpose of efficiency,
due to the fact that detector-free matchers produce a signif-
icant number of matches in SfM, especially on large-scale
scenes (Feat.-BA with cost map requires ∼50GB memory
on Trafalgar scene in 1DSfM dataset [30]). Our experiments
intend to show that the proposed refinement module can
achieve comparable or even better accuracies than PixSfM
while preserving Geo.-BA’s advantage in efficiency both in
terms of memory and speed. The proposed multi-view re-
finement matching with transformer plays an important role
in achieving high accuracy in our Geo.BA-based framework.

C. Detailed Comparisons with OnePose++
OnePose++ [11] is an object pose estimation method that
firstly reconstructs object point clouds from a set of posed
images using LoFTR [23], and then performs 2D-3D match-
ing between point clouds and query images for object pose
estimation. The idea of its reconstruction phase is to detach
LoFTR’s coarse and fine matching stage that uses coarse
matches for initial reconstruction to solve the multiview in-
consistency problem, and then use LoFTR’s fine matching
stage to refine pair-wise matches for higher point cloud ac-
curacy. In the following, we compare each phase of the
method and the proposed dataset between OnePose++ and
our framework.

Coarse Phase For the coarse phase, OnePose++ is lim-
ited to using LoFTR’s coarse 1/8 grid-level points, due to
the requirement of its fine-level matching stage in the later
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refinement phase. Thanks to the flexibility of our multi-
view refinement network, our method can use detector-free
matches with different quantization ratios (shown in the
main paper’s Tab. 3), or even sparse detected points (shown
in Tab. 2) as input, which is more flexible for practical usage.

Refinement Phase For the refinement phase, OnePose++
only performs multiple pair-wise matching using LoFTR’s
fine-level matching based on a fixed reference point. Con-
versely, our refinement network leverages multi-view infor-
mation of the whole feature track for refinement, with better
multi-view consistency. Moreover, the refinement is per-
formed once in OnePose++, where our iterative refinement
mechanism is another advantage over it. The quantitative
comparison is shown in the main paper’s Tab. 2. Provided
with the same coarse SfM results, our framework outper-
forms OnePose++ both in terms of accuracy and complete-
ness. Moreover, with only a single refinement iteration (re-
sult shown in main paper’s Tab. 3 (2)) as in OnePose++, we
can also surpass OnePose++ on both reconstruction accuracy
and completeness by a large margin, which demonstrates the
capability of our multi-view refinement module.

Dataset As for the comparisons between OnePose++
dataset and our Texture-Poor SfM dataset, both of them con-
tain texture-poor objects but the properties of images are dif-
ferent since they are prepared for different tasks. OnePose++
dataset is proposed for the object pose estimation that as-
sumes using a set of posed images to estimate object poses
in arbitrary different environments. Therefore, to provide
accurate poses, they place textured markers around objects
for better pose tracking during data capture. However, if
using this dataset in our SfM evaluation task, these markers
will significantly reduce the difficulty since multi-view poses
can be easily recovered with strong matches on markers.

Different from it, low-textured objects are placed on a
texture-less plane in our dataset. Textured markers are elabo-
rately placed on the plane but far from the object to facilitate
the pose tracking in ARKit and BA pose refinement in post-
process. They are later cropped and only foreground images
without salient features are used for evaluation. Example
images of the proposed Texture-Poor SfM dataset are shown
in the main paper’s Fig. 6. Our dataset mimics the challeng-
ing real-world object capture scenario in that texture-poor
objects are placed on a markless plane, which imposes sig-
nificant difficulty for the SfM algorithms for accurate pose
recovery.

D. Method Details
D.1. Camera Parameter Estimation Details

Like COLMAP, our method does not require known intrinsic
parameters, which can be inferred from image information

(EXIF if available, otherwise, using max image edge size
as initialization) and refined during BA, both in coarse SfM
and refinement phase. All methods are not provided with
intrinsics when evaluated on the IMC and ETH3D datasets.
In the image registration phase, image poses are solved by
the PnP algorithm first, followed by no-linear optimization.
Then the poses will be optimized simultaneously with the
point cloud in BA.

D.2. Reference View Selection in Feature Track Re-
finement

A track Tj = {xk ∈ R2|k = 1 : Nj} is divided into ref-
erence and query views and features of the reference view
are correlated on query views to search for multi-view cor-
respondences. This strategy avoids exhaustively searching
correspondences between every pair within a feature track,
which is a complex topology [8] and is inefficient for re-
finement. Our criteria for selecting the reference view is
to minimize the keypoint scale differences between the ref-
erence view and query views to improve the matchability.
Concretely, we define the scale sk of a 2D observation xk

in a feature track Tj as sk = dk/fi, where fi is focal length
in intrinsic parameter Ci and dk is the depth of xk that
is obtained by projecting its corresponding 3D point Pj

with the current estimated pose ξi. Then, the view with a
medium scale across the track is selected as the reference
view, whereas the rest views are query views.

D.3. Multi-View Feature Transformer

The backbone from S2DNet [10] is used as the CNN fea-
ture extractor. We interpolate and fuse the output features
of adaption layers in S2DNet, which are at original image
resolution and 1/8 resolution respectively, to create a single
feature map.

After the feature extraction, flattening, and concatena-
tion, we use the Linear Transformer [14] to efficiently trans-
form the reference feature F̃r and query feature F̃q. Lin-
ear Transformer reduces the computational complexity of
the Transformer [25] from O(N2) to O(N) by substitut-
ing the exponential kernel with an alternative kernel func-
tion sim(Q,K) = ϕ(Q) · ϕ(K)T,where ϕ(·) = elu(·) + 1.
Please refer to the original paper [25] for more details.

We denote a set of self- and cross-attention layers as an
attention block:

F̃′r
(l+1) = SelfAtten(F̃r

(l), F̃
r
(l)) ,

F̃′q
(l+1) = SelfAtten(F̃q

(l), F̃
q
(l)) ,

F̃r
l+1, F̃

q
l+1 = CrossAtten(F̃′r

(l+1), F̃
′q
(l+1)) .

The indices of intermediate features are indicated by ·(l).
F̃′ represents an intermediate feature processed by a self-
attention layer. Our attention module sequentially performs
the attention block n = 2 times to transform the reference
and query features.



The transformed features are reshaped into feature
patches {F̂k ∈ Rp×p×c} for multi-view feature correlation.

D.4. Geometry Refinement

With refined feature tracks, we perform bundle adjust-
ment (BA) to optimize the scene geometry by reprojection
error. The Cauchy function is used as the robust loss function
ρ(·). For efficiency, we form the reduced camera system by
the Schur Complement and then solve it by dense or sparse
decomposition for small- or medium-scale scenes (number
of images smaller than 500), respectively. On large-scale
scenes, the reduced camera system is solved by Precondi-
tioned Conjugate Gradients algorithm (PCG) [2, 4]. More-
over, to reduce the drift during BA, we select the farthest
two views in the coarse model and fix the pose of one im-
age and one translation DoF of the other image during BA,
following [22].

E. Training of Multi-View Feature Transformer
E.1. Ground Truth Generation

Our multi-view feature transformation module is trained on
the MegaDepth [15], which is a large-scale outdoor dataset
with 196 different scenes. To construct ground truth feature
tracks for training, we first sample image bags for each scene
and then project the grid-level points of a randomly selected
reference view to other query views by depth maps.

Specifically, we sample 2000 image bags for each scene
with a maximum of six images in each bag. The co-visibility
extracted from the provided scene SfM model is used to
sample image bags. We define the co-visibility ratio v of a
sampled image bag as:

v =
|{P}0 ∩ {P}1 ∩ · · · ∩ {P}i|

min(|{P}0|, |{P}1|, · · · , |{P}i|)
,

where {P}i is the set of 3D points observed by image Ii, and
| · | is the operator that calculates the number of elements in a
set. The image bags with a co-visibility ratio 0.02 < v < 0.6
are kept for training. Moreover, the low-quality scenes re-
ported by [8, 24] (‘0000’, ‘0002’, ‘0011’, ‘0020’, ‘0033’,
‘0050’, ‘0103’, ‘0105’, ‘0143’, ‘0176’, ‘0177’, ‘0265’,
‘0366’, ‘0474’, ‘0860’, ‘4541’) and scenes that overlap with
IMC test set (‘0024’, ‘0021’, ‘0025’, ‘1589’, ‘0019’, ‘0008’,
‘0032’, ‘0063’) are removed from training.

After the image bag sampling, to construct ground truth
feature tracks, we randomly select a reference image in the
bag and project its grid-level points to other query views by
the depth map, intrinsic parameters, and poses. Since the
depth maps in MegaDepth are obtained by the MVS algo-
rithm, inaccurate depth values exist. For accurate ground-
truth multi-view matches, projection depth error and cycle
projection error with strict thresholds are checked after the
projection to filter inaccurate 2D observations in a feature

track. The projection depth error ed and cycle projection
error ec are defined as follows:

{
ed =

∥Dq(xproj)−dproj∥
Dq(xproj)

,

ec = ∥xr − πr · ξ−1
r→q ·Dq(xproj) · π−1

q (xproj)∥ ,

where xproj = πq · ξr→q ·Dr(xr) · π−1
r (xr) .

xr is a sampled 2D point in reference view, D(·) is the
depth map of reference or query view, π is the projection
determined by intrinsic parameters, and ξr→q = ξq · ξ−1

r is
the relative pose between reference view and a query view.
dproj is the z value of 3D points in query view corresponding
to xproj . A point in the query view is kept in the ground-
truth feature track when projection depth error ed < 0.005
and cycle projection error ec < 1px.

E.2. Loss

The multi-view transformer module is trained by minimizing
the average ℓ2 loss on keypoint locations between the refined
tracks and the ground-truth tracks. Following [23, 28], we
make our loss uncertainty weighted with a variance term
σ2(x):

L =
1

N

∑
j∈nt

∑
k∈nv

1

σ2(x)
∥x− xgt∥2 ,

where nt is the number of feature tracks, nv is the number of
query views in a track, and N is the total number of refined
keypoints. σ2(x) is calculated by the trace of the heatmap’s
covariance matrix, which is detached during training to pre-
vent the network from decreasing the loss by increasing the
variance.

E.3. Training Details

The images are resized to have the longest edge of 840. The
feature backbone is initialized by the pretrained weighted
from S2DNet, and the attention blocks are randomly ini-
tialized. We use the AdamW optimizer to train the entire
network, where the initial learning rate of backbone and
attention blocks are 2 × 10−4 and 4 × 10−4, respectively.
The network training takes about 30 hours with a batch size
of 8 on 8 NVIDIA V100 GPUs.

F. Texture-Poor SfM Dataset
In the proposed Texture-Poor SfM dataset, low-textured ob-
jects are placed on a texture-less plane, and video is captured
surrounding each object. Each video is recorded at 30 fps for
about 30 seconds in 1920× 1440 resolution with per-frame
poses and intrinsic parameters estimated by ARKit [1]. To
stabilize the feature tracking and pose estimation in ARKit,
textured markers are elaborately placed on the plane but far
from the object. Then we annotate the 3D foreground region



Sparse Det. & Matcher Refinement ETH3D Dataset IMC2021 Dataset

AUC@1◦ AUC@3◦ AUC@5◦ AUC@3◦ AUC@5◦ AUC@10◦

SIFT + NN PixSfM 26.94 39.01 42.19 26.45 35.73 47.24
Ours 29.28 41.76 45.12 27.29 36.92 48.31

R2D2 + NN PixSfM 43.58 62.09 66.89 32.44 42.55 55.01
Ours 46.84 64.31 68.75 33.26 43.12 55.97

SP + SG PixSfM 50.82 68.52 72.86 46.30 58.43 71.80
Ours 52.66 70.15 74.85 46.43 58.51 72.33

Table 2. Comparison of sparse local features accompanied with our
refinement and PixSfM on ETH3D dataset and IMC2021 dataset.

for later filter backgrounds that are discriminative and can
reduce the difficulty of the dataset.

After the data capture, we perform a global BA [22] to
further optimize camera poses estimated by ARKit and re-
duce the potential drift. We extract features [7], match [19]
them, and then perform triangulation using the currently es-
timated poses. Then the global BA is performed to optimize
poses. The placed discriminative markers can also facilitate
feature extraction and matching in this phase. After the pose
refinement, we crop out the background with salient features,
and images after crop are resized to 840 × 840. With the
refined poses, we project the annotated foreground regions to
each image to filter backgrounds with salient features, where
only cropped foreground images without markers are used
for evaluation.

To impose larger viewpoint changes, we sample 60 subset
image bags for each scene based on co-visibility, similar to
the IMC 2021 dataset [13]. Each bag contains either 5, 10,
or 20 images.

G. Experiments
G.1. Datasets

On the IMC dataset, the validation set is already separated.
We follow their protocol and use all nine test scenes for eval-
uation, and use validation scenes Sacre Coeur, Saint Peter’s
Square, and Reichstag for tuning hyperparameters. Images
are resized so that the longest edge dimension is equal to
1200 pixels for all methods. As for the ETH3D dataset, the
images are resized to have a maximum edge dimension of
1600 pixels for all methods. Since only training data GT
3D dense reconstructions are given in ETH3D, we can only
use 13 training scenes for the evaluation of Triangulation,
which is the same with PixSfM. For SfM, we can evaluate
methods as long as we have GT poses. Therefore we use all
training and test scenes (25 scenes in total) in ETH3D for
evaluation, for more comprehensive experiments. Among
25 scenes, randomly sampled three validation scenes are
boulders, relief and relief_2, where the rest 22 scenes are
used for evaluation. On the proposed Texture-Poor SfM
dataset, we use randomly selected three scenes as validation
sets for tuning hyper-parameters and the remaining scenes
for evaluation, where the original 840 × 840 image size is

kept for matching. Note that due to the image crop in the
post-process of the Texture-Poor SfM dataset for removing
salient markers, the principle points of intrinsic parameters
are not in the image center. To avoid the degeneration of
estimating principle points in SfM, all of the methods are
provided with known intrinsic parameters, which are kept
fixed during SfM.

G.2. Details about Multi-View Camera Pose Esti-
mation

The AUC of pose error at different thresholds is used as
the metric to evaluate the accuracy of estimated multi-view
poses, following the IMC benchmark [13] and PixSfM [16].
This metric converts N multi-view poses to C2

N pair-wise
relative transformation, which is invariant to the difference
of coordinate system between reconstructed and ground-
truth poses. The pose error is defined as the maximum
angular error in rotation and translation. Specifically, we
adopt the exact AUC metric using explicit integration rather
than coarse histograms for the evaluation of all three datasets,
which is commonly used in [19, 23].

On the IMC dataset and Texture-Poor SfM dataset, we
use pose error at (3◦, 5◦, 10◦) thresholds. Since the ETH3D
dataset has high-resolution images and accurate ground truth
calibration, we further report a more strict 1◦ threshold to
evaluate the capability of highly accurate pose estimation.

We follow PixSfM’s setting that for baseline SIFT+NN,
the DEGENSAC with an inlier threshold of 0.5px is utilized
for match filtering. For other baselines and our method,
no additional match filtering method is incorporated, where
only COLMAP’s inherent geometric verification is used.

G.3. Sparse Features with Our Refinement.

Our refinement module can also be used to refine SfM mod-
els reconstructed by sparse feature detecting and matching to
further bring pose improvement. Pose accuracy is evaluated
on the ETH3D dataset and IMC 2021 dataset. Results shown
in Tab. 2 demonstrate that our framework can consistently
outperform PixSfM when accompanied by the same sparse
detectors and matchers.

G.4. More Ablation Studies

In this part, we validate the effectiveness of our refinement
pipeline by the multi-view pose metric on multiple datasets.

The results in Tab. 3 indicate that our iterative refinement
pipeline consistently improves pose accuracy for various
detector-free matchers across different datasets. As shown
in Tab 4, using other reference view selection strategies,
including using a view with the smallest or largest scale,
and randomly selecting a reference view for each track, will
reduce the final pose accuracy.



ETH3D Dataset IMC (Mount Rushmore)

AUC@1◦ AUC@3◦ AUC@5◦ AUC@3◦ AUC@5◦ AUC@10◦

LoFTR [23]
No Refine 30.88 58.90 68.06 21.26 32.09 47.96

Iter 1 57.20 74.61 78.85 29.69 41.42 56.61
Iter 2 59.12 75.59 79.53 32.35 43.92 58.91

AspanTrans. [5]
No Refine 28.41 55.87 65.40 19.04 29.02 44.26

Iter 1 55.48 72.84 77.07 29.06 40.29 55.11
Iter 2 57.23 73.71 77.70 31.77 43.23 57.79

MatchFormer [29]
No Refine 26.30 53.95 63.48 8.48 15.46 28.47

Iter 1 54.30 71.29 75.52 24.25 35.10 49.80
Iter 2 56.70 73.00 76.84 29.31 39.66 53.32

Table 3. Ablation Study of Refinement Iterations. On the ETH3D
dataset and scene Mount Rushmore in the IMC dataset, we quanti-
tatively evaluate the impact of the number of refinement iterations.
The AUC of pose error at different thresholds is reported.

IMC (Mount Rushmore)

AUC@3◦ AUC@5◦ AUC@10◦

Medium Scale 32.35 43.92 58.91
Smallest Scale 30.63 42.11 56.99
Largest Scale 31.94 42.98 57.54

Random Selection 31.21 42.45 57.24

Table 4. Ablation Study of Reference View Selection. On the
scene Mount Rushmore in the IMC dataset, we evaluate the impact
of the reference view selection strategies. The AUC of pose error
at different thresholds is reported.

G.5. Efficiency on Large-Scale Scenes

Experiments of the large-scale scenes are conducted on a
server using 16 CPU cores (Intel Xeon Gold 6146) and four
NVIDIA V100 GPUs. The subset images are uniformly
sampled from the Aachen v1.1 dataset [20, 21, 34]. For
each image, the top 20 most covisible images determined by
image retrieval [3] are used for matching, where images are
resized so that the longest edge equals 1200. To refine the
large-scale scene with a large number of 3D points caused
by semi-dense matchers, we perform refinement only once
and use four GPUs for parallelized multi-view matching. As
for geometry refinement, we use multi-core bundle adjust-
ment [31] to leverage multiple CPU cores.

Comparison with detector-based pipelines. We show
the overall running time comparison with detector-based
pipelines on the four largest scenes in the 1DSfM [30] dataset
in Tab. 5. On large-scale scenes, our framework is slower
than detector-based pipeline with sparse features. On the
one hand, detector-free matching is inherently slower than
sparse matching. Moreover, due to a significant number of
matches produced by detector-free matchers, the incremental
mapping phase is also slower. However, on the scene with
images collected from the internet and with large viewpoint
and illumination changes, our framework can register signif-
icantly more images compared with sparse methods. These
results also show that our framework applies to large-scale
scenes (with more than 15000 images). Visualizations of

Paccadilly: Total 7351 Images; Registrated 4580 Images

Trafalgar: Total 15685 Images; Registrated 10716 Images

Figure 1. Reconstruction of scenes in the 1DSfM dataset.

Method Trafalgar (15685 Img) Piccadilly (7351) Vienna Cathe. (6288) Union Squere (5960)

Num. Img. Time Num. Img. Time Num. Img. Time Num. Img. Time

COLMAP 7001 3.2h 2950 1.8h 1139 1.1h 1026 0.9h
COLMAP (SP + SG) 9482 6.8h 3488 3.4h 1764 2.7h 1835 2.5h

Ours 10716 19.7h 4580 11.2h 2436 8.8h 2026 8.2h

Table 5. Comparsion with detector-based methods on the 1DSfM
dataset.

reconstruction are shown in Fig. 1

H. Limitations and Future Works
The main limitation of our framework is efficiency. Due
to the significant number of matches produced by detector-
free matches, the overall mapping phase will be inevitably
slower than the previous detector-based pipelines, especially
on large-scale scenes.

As future work, our framework can be extended with
more advanced parallelized BA methods [12, 17] for better
efficiency and integration with multi-modality data such as
depth maps and IMUs if available in real applications.

H.1. Failure cases

As shown in Fig. 2, on the scenes [18] with strong dupli-
cated structures, our framework may yield error registrations,
which may come with the side effects of detector-free match-
ers that are capable of matching texture-poor scenes. Many
previous methods [6, 18, 26, 32, 33] have focused on solving
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Figure 2. Failure cases of our framework on scenes [18] with strong
duplicated structures. With the help of disambiguation method [6],
our framework can correctly reconstruct ambiguous scenes.

scene disambiguations, which can be further integrated into
our framework to alleviate this problem. With the Missing
Correspondence Disambiguation [6, 33], our framework can
successfully reconstruct the ambiguous scenes, as shown in
Fig. 2 (row 3).

I. Real-World Scenes “Deep Sea” and “Moon
Surface”

In this section, we introduce the data collection and run-
ning of challenging real-world scenes shown in the main
paper’s Fig. 1 and the demo video. The Deep Sea scene is
from sequence 5 of the Aqualoc dataset [9]. This sequence
was chosen because it contains a texture-poor section that
presents significant challenges. The Moon Surface sequence
is taken from an internet video that has low-texture and
repetitive patterns, as well as severe motion blur.

For the scene Deep Sea, we use the image retrieval [3]
to select the top 30 most covisible images of each image
for matching. As for the Moon Surface, we use sequential
matching to match an image with its nearest 20 frames and
run our framework.

J. Application for Dense Reconstruction

To demonstrate the application of our framework that can
provide accurate poses for dense reconstruction on texture-
poor scenes, we run our framework on the scene Headphone
Box and Eyeglass Box. Results are shown in Fig 3. The
sequences are downsampled to 6fps for running our detector-
free SfM framework, which provides the recovered poses

Texture-Poor Objects Dense Reconstruction

Benefits

Our Detector-Free SfM

Figure 3. Applications. The recovered poses on texture-poor
scenes by our detector-free SfM framework benefit substream tasks,
e.g., dense reconstruction using neural implicit fields [27].

for neural surface reconstruction method NeuS [27] to re-
construct the scene. We manually filter the background
reconstruction and only keep the object of interest for visual-
ization.
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