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We organize our supplementary material as follows.

• In Section A, we introduce more details about data aug-
mentation and other hyper-parameters.

• In Section B, we show few-shot learning performance
comparisons with SN-Net on Stanford Cars [4].

• In Section C, we adapt our ESTA to Convnets and show
the performance comparisons with SN-Net and anchors
individually fine-tuned with LoRA [5].

• In Section D, we investigate the effectiveness of our dis-
tillation strategy.

• In Section E, we study the effect of the momentum coef-
ficient η.

• In Section F, we analyze why our strategy of simultane-
ously stitching and adapting anchors leads to better per-
formance.

• In Section G, we investigate whether the deployed task-
specific stitches are the same across three sampled tasks:
Oxford Flowers [11], Stanford Cars [4], and CUB-200-
2011 [15].

• In Section H, we conduct more experiments comparing
our proposed PST with naive LoRA.

• In Figure F, we show more visualizations for distributions
of pair-wise gradient angles among stitches when updat-
ing shared weights similar to Figure 2 of the main paper.

• In Table I, we show quantitative results from Figures 3
and 4 of the main paper.

• In Section I, we show more qualitative results on the
instruction-following task.

A. Data Augmentation and Other Hyper-
parameters

For our ESTA and the baseline methods, we follow [6] for
a standard data augmentation pipeline with resize, random
crop to 224×224 and random horizontal flip for the FGVC
and CIFAR-100 datasets, and only resize to 224×224 for
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VTAB-1k datasets. Following [18], we use AdamW op-
timizer [10] with a cosine scheduler and a learning rate
warm-up period of 10 epochs. We set weight decay as
1× 10−4 for all visual recognition datasets. We choose the
base learning rate with a grid search on the validation set
over {1× 10−4, 2× 10−4, 1× 10−3, 2× 10−3} following
the split of [6]. We set the learning rate as base lr× b/256,
where b is the batch size. All experiments are conducted on
NVIDIA A100 GPUs. Due to the constraints of computa-
tional resources, we use 8-bit matrix multiplication [3] for
the frozen weights in the instruction-following task during
fine-tuning and generation.

B. Results on Few-shot Learning
Following [19], we conduct experiments with limited sam-
ples (1, 4, 8, 16 shots) on Stanford Cars task [4]. The results
are visualized in Figure A. We have similar observations as
those in Section 5.1 of the main paper that our ESTA 1)
exhibits smooth FLOPs-accuracy curves; 2) generally out-
performs SN-Net by large margins; and 3) achieves com-
parable or even better performance than individually fine-
tuned anchors, which we conjecture due to model stitch-
ing’s strong weight-sharing regularization. This suggests
that our ESTA works well in data-efficient adaptation.

C. Apply ESTA to Convnets
We employ our ESTA to adapt the popular Convnet archi-
tecture ConvNext-T/S/B [9] pre-trained on ImageNet-22k.
The averaged results on five FGVC datasets are visualized
in Figure B (a). We have similar observations as those in
Figures 3 and 4 of the main paper that our ESTA obtains
stitches with a smooth FLOPs-accuracy curve and outper-
forms SN-Net by large margins. This indicates that our
ESTA is not restricted to transformer-based architectures.

D. Effect of Inplace Distillation
We investigate the effect of inplace distillation that is in-
troduced in Section 4.2 of the main paper. The averaged
results on five FGVC tasks are visualized in Figure B (b).
We observe that inplace distillation contributes to the su-
periority of our proposed ESTA framework for obtaining
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Figure A. Few-shot learning performance comparisons with SN-Net [12] for adapting ViT-Ti/S/B pre-trained on ImageNet-22k [2] to
Stanford Cars [4]. We denote individually fine-tuned anchors as yellow stars and also show the number of trainable parameters.

(a) (b) (c)

Figure B. (a) Comparisons with SN-Net [12] for adapting ConvNext-T/S/B [9] pre-trained on ImageNet-22k [2]. We denote individually
fine-tuned anchors as yellow stars and also show the number of trainable parameters. (b) Effect of inplace distillation. (c) Effect of the
momentum coefficient η for updating the importance scores. We show averaged results on five FGVC datasets for (a), (b), and (c).

stitches of good performance. However, its contribution
is not as significant as the key designs of ESTA, i.e., our
parameter-efficient stitch fine-tuning method, a one-stage
deployment pipeline with a task-specific stitch sampling
strategy as shown in Figure 6 of the main paper.

E. Effect of η
As introduced in Section 4.2 of the main paper, η is the
momentum coefficient for updating the importance scores
of the stitches. We investigate the effect of η and visualize
the averaged results on five FGVC datasets in Figure B (c).
We empirically find that setting η to 0.9 and 0.99 achieves
slightly better results than setting η to 0.8. We conjecture
that a small value of η makes the sampling process unsta-
ble during an early training stage after the short warm-up
period. Therefore, we set η to 0.9 as the default setting.

F. Why Our “Adapt-and-stitch” Leads to Bet-
ter Performance?

As shown in Section 5.3 and Figure 6 (d) of the main
paper, our strategy to simultaneously adapt and stitch an-
chors achieves significant performance gain from SN-Net’s
straightforward strategy to first adapt and then stitch an-
chors. We speculate that anchors are likely to overfit dur-
ing fine-tuning in SN-Net’s anchor adaptation stage and lose
their generalization capability [1, 16]. Accordingly, stitch-
ing their weights in SN-Net may not generalize well to un-
seen samples. To verify our speculation, we compare the
training cross-entropy loss and testing accuracy with respect

to the training epoch. In Figure C, we observe that SN-Net’s
straightforward “Adapt-then-stitch” strategy exhibits lower
cross-entropy loss throughout training, but the testing ac-
curacy barely improves after epoch 50. This observation
aligns with our speculation and suggests the improved gen-
eralization capability of our “Adapt-and-stitch” pipeline.

G. Are Important Stitches the Same Across
Different Tasks?

We investigate whether the important stitches are the same
across tasks on Oxford Flowers [11], Stanford Cars [4], and
CUB-200-2011 [15] datasets. The patterns are visualized
in Figure D. We observe that the selected important stitches
are different on these visual recognition tasks, which veri-
fies our motivation for deploying task-specific stitches and
assigning higher sampling probabilities to them.

H. More Comparisons with Naive LoRA

We have shown that our PST excels naive LoRA (PST
w/o stitch-specific bias) by a non-negligible margin in Fig-
ure 6 (b) of the main paper. In Figure E, we further ex-
periment on both FGVC and VTAB-1k benchmarks and
compare PST with: 1) naive LoRA with different trainable
parameters (different ranks); and 2) stitch-specific LoRA
where we optimize an independent set of LoRA modules
for each stitch. Across both benchmarks, our PST exceeds
the competitors under comparable or lower trainable param-
eters, suggesting its superiority.



Figure C. Fine-tuning cross-entropy loss and testing accuracy with respect to the fine-tuning epochs averaged over five FGVC datasets.
We show the testing accuracy for 25, 50, and 75 epochs. Our strategy “Adapt-and-stitch” takes 100 epochs for fine-tuning. In contrast,
“Adapt-then-stitch”, as a straightforward approach to apply SN-Net, first individually adapts each anchor for a total of 300 epochs, and
then fine-tunes SN-Net for another 100 epochs.

Figure D. The patterns of the deployed stitches selected by our task-specific sampling strategy on Oxford Flowers [11], Stanford Cars [4],
and CUB-200-2011 [15] datasets. We visualize the number of blocks from anchors to form these stitches.

Figure E. Comparisons with naive LoRA and stitch-specific LoRA
(SS-LoRA). We show averaged results on FGVC (left) and VTAB-
1k (right). “SSB” represents stitch-specific bias terms.

I. More Qualitative Evaluation on Instruction-
following Task

We show more qualitative comparisons between our
Stitched LLaMA and the individually fine-tuned Alpaca-
LoRA 7B and 13B in Figures G and H. We empirically find
that the quality of the responses for our Stitched LLaMA
improves with more parameters, which aligns with our find-
ings in Sections 5.1 and 5.2 of the main paper. For instance,
in Figure G, both Alpaca-LoRA 7B and Stitched LLaMA
8B tend to generate repetitive responses; however, Stitched

LLaMA with higher numbers of parameters produce more
coherent and informative responses. In addition, as shown
in Figure H, as the total parameters of the stitches increase,
the response content becomes richer and more detailed.
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Figure F. More visualizations for distributions of pair-wise gradient angles among stitches when updating shared weights. We show
visualizations for ImageNet-1k [13], Stanford Cars [4], CUB-200-2011 [15], and NABirds [14] datasets. Angle 90◦ is highlighted with
a dashed red line. For simplicity, we combine the gradients for query, key, and value projections and show their angles for a total of 32
stitches when stitching ViT-Ti and ViT-S anchors. Similar to Figure 2 of the main paper, the gradient angles are larger in the downstream
datasets than in the source domain ImageNet-1k [13].



Alpaca-LoRA 13B (0.043 s/token): To lift a house like in the movie “Up,” we would need a large number of balloons. However, the exact number of balloons 
would depend on several factors such as the weight of the house, the size and strength of the balloons, and the buoyancy of the air inside the balloons. Let's 

assume that the house weighs 10,000 pounds and that each balloon can hold 1 pound of air. In this case, we would need 10,000/1 = 10,000 balloons to lift the 
house. However, it's important to note that real-life balloons may not be able to hold as much air as the ones in the movie. In the movie, the balloons were made of 
a special material that could hold a lot of air, allowing the house to be lifted into the air. Real-life balloons, on the other hand, may not be able to hold as much air 
and would require more balloons to lift the same weight. In summary, we would need a large number of balloons to lift a house like in the movie "Up," but the 
exact number would depend on factors such as the weight of the house, the size and strength of the balloons, and the buoyancy of the air inside the balloons.

Stitched LLaMA 8B (0.037 s/token): To lift a house like in the movie “Up” with balloons, we need
to consider the weight of the house, the weight of the balloons, and the relationship between the 

weight of the balloons and the weight of the house. First, we need to determine the weight of the house. 
The house in the movie "Up" has a weight of approximately 100,000 pounds. Next, we need to determine 
the weight of the balloons. The balloons in the movie "Up" are inflated with air, and air has a weight of 
0.00000001 kilograms per cubic meter (0.00000001 kg/m). Therefore, the weight of the air in the balloons 
is approximately 0.00000001 kg. Now, we can calculate the weight of the balloons by multiplying the 
weight of the air in the balloons by the number of balloons. The number of balloons in the movie "Up" is 
approximately 100. Therefore, the weight of the balloons is approximately 0.00000001 kg multiplied by 
100, which is approximately 0.0000001 kg. Finally, we need to consider the relationship between the 
weight of the balloons and the weight of the house. The weight of the house is approximately 100,000 
pounds, and the weight of the balloons is approximately 0.0000001 kg. Therefore, the weight of the 
balloons is approximately 0.0000001 kg divided by 100,000 pounds, which is approximately 
0.0000000000000000000000000000000000000000000000000000000000000000000000000000...

Alpaca-LoRA 7B (0.035 s/token): To lift a 
house like in the movie "Up", it would take 

approximately 10,000 helium-filled balloons. The 
balloons would need to be filled with enough 
helium to lift the weight of the house, which is 
estimated to be around 100,000 pounds. The 
balloons would also need to be secured to the 
house in order to lift it. The balloons would also 
need to be secured to the house in order to lift it. 
The balloons would also need to be secured to the 
house in order to lift it. The balloons would also 
need to be secured to the house in order to lift it. 
The balloons would also need to be secured to the 
house in order to lift it........

Stitched LLaMA 11B (0.041 s/token): In the movie "Up," Carl Fredricksen, a 78-year-old man, ties thousands of balloons to his house in order to lift it into 
the sky and fulfill his lifelong dream of visiting Paradise Falls. However, the exact number of balloons needed to lift the house is not specified in the movie. 

One way to estimate the number of balloons needed would be to consider the weight of the house, which is not mentioned in the movie. If we assume that the 
house weighs 100,000 pounds, then we can estimate that it would take approximately 100,000 balloons to lift it into the sky. Another way to estimate the number 
of balloons needed would be to consider the volume of the house, which is also not mentioned in the movie. If we assume that the house has a volume of 100,000 
cubic meters, then we can estimate that it would take approximately 100,000,000 balloons to lift it into the sky. In conclusion, it is not possible to accurately 
determine the exact number of balloons needed to lift the house in the movie "Up" without additional information such as the weight of the house or its volume.

Instruction: How many balloons would it take to lift a house like in the movie "Up"? Try to explain your answer. Your explanation should take the reader through 
your reasoning step-by-step.

Figure G. Instruction-following comparison between Stitched LLaMA obtained by our ESTA and the individually fine-tuned anchors
(Alpaca-LoRA 7B and 13B) [5].

Table I. Quantitative results from Figures 3 and 4 of the main paper.
Stanford Cars [4]

FLOPs (G) 2.48 3.31 4.41 5.85 6.93 8.39 9.47 10.54 11.62 13.77 14.16 15.54 16.61 17.39 17.67
Accuracy (%) 82.00 84.37 85.25 84.87 85.40 86.11 86.22 86.83 86.99 86.15 87.58 87.68 87.90 87.28 87.20

CUB-200-2011 [15]

FLOPs (G) 2.86 3.97 4.52 5.85 6.93 8.00 9.08 10.54 11.62 13.77 14.46 15.93 17.00 17.39 17.67
Accuracy (%) 81.29 82.86 83.62 85.54 84.36 85.43 86.05 86.71 86.88 88.06 87.76 88.44 88.16 87.88 88.47

Stanford Dogs [7]

FLOPs (G) 2.20 3.53 4.36 5.85 6.93 8.39 9.08 10.93 12.01 13.39 14.16 15.24 16.31 17.39 17.67
Accuracy (%) 76.17 78.72 79.98 81.83 81.18 82.19 82.95 83.61 85.02 87.65 87.73 88.51 88.64 88.47 89.13

NABirds [14]

FLOPs (G) 3.03 3.80 4.63 5.85 6.93 8.00 9.85 10.54 12.01 13.08 14.46 15.24 16.31 17.39 17.67
Accuracy (%) 77.23 78.28 79.15 81.71 80.79 81.85 83.22 83.65 84.09 84.44 84.20 85.12 85.19 85.14 85.06

VTAB [17]

FLOPs (G) 2.02 3.03 4.26 4.53 5.85 7.20 8.57 9.69 10.76 11.98 13.10 14.12 15.63 16.59 17.57
Accuracy (%) 67.25 69.56 71.61 71.24 73.11 73.19 73.32 73.08 73.19 73.43 74.13 74.27 74.7 74.83 75.10

CIFAR-100 [8]

FLOPs (G) 2.35 3.08 4.37 4.65 5.83 8.76 9.84 10.92 12.00 12.7 13.08 14.16 15.24 15.94 17.67
Accuracy (%) 86.60 88.65 90.92 90.91 90.72 91.18 90.93 91.03 91.56 91.33 92.15 92.12 92.59 92.55 93.08



Alpaca-LoRA 13B (0.043 s/token): Python and JavaScript are both popular programming languages, but they have some key differences. Here are some of 
the main differences between the two: 1. Syntax: Python and JavaScript have different syntaxes. Python is a high-level, interpreted programming language, 

while JavaScript is a high-level, object-oriented programming language. This means that the way code is written in Python and JavaScript is different. 2. Data Types: 
Python and JavaScript have different data types. In Python, everything is an object, while in JavaScript, there are primitive data types such as numbers, strings, and 
booleans. 3. Functions: In Python, functions are first-class objects, meaning that they can be assigned to variables, passed as arguments, and returned as values. In 
JavaScript, functions are objects that can be passed as arguments, but they cannot be assigned to variables or returned as values. 4. Execution: Python is an 
interpreted language, meaning that code is executed line by line as it is read by the interpreter. JavaScript, on the other hand, is a compiled language, meaning that 
code is compiled into bytecode and then executed by the browser‘s JavaScript engine. 5. Libraries and Frameworks: Python has a rich ecosystem of libraries and 
frameworks, such as NumPy, Pandas, and TensorFlow, which are widely used in data science, machine learning, and artificial intelligence. JavaScript, on the other 
hand, has a large ecosystem of frameworks and libraries, such as React, Angular, and Node.js, which are widely used in web development.
In summary, Python and JavaScript are both popular programming languages, but they have some key differences in syntax, data types, functions, execution, and 
libraries and frameworks. Python is a high-level, interpreted language, while JavaScript is a high-level, object-oriented language. Python has a rich ecosystem of 
libraries and frameworks, while JavaScript has a large ecosystem of frameworks and libraries.

Stitched LLaMA 11B (0.041 s/token): Python and JavaScript are both high-level programming languages, but they have several key differences. Here are 
some of the main differences between the two languages: 1. Syntax: Python uses indentation to organize code, while JavaScript uses curly braces. This can 

make it more difficult for beginners to learn and understand. 2. Data Types: Python has a rich set of built-in data types, including integers, floats, strings, lists, and 
dictionaries. JavaScript, on the other hand, does not have as many built-in data types. Instead, it relies on user-defined data types. 3. Object-Oriented Programming: 
Python is an object-oriented programming language, while JavaScript is not. This means that in Python, objects are first-class citizens, while in JavaScript, they are 
second-class citizens. 4. Functions: In Python, functions are first-class citizens, meaning they can be passed as arguments to other functions. In JavaScript, functions 
are not first-class citizens and must be invoked using the `apply` method. 5. Scope: In Python, the scope of a variable is determined by where it is defined. In 
JavaScript, the scope of a variable is determined by where it is used. 6. Dynamic Typing: Python is a dynamically typed language, meaning that the type of a variable 
is determined by its value. In contrast, JavaScript is a statically typed language, meaning that the type of a variable is determined by its declaration.
In summary, Python and JavaScript are both high-level programming languages, but they have several key differences in terms of syntax, data types, and object-
oriented programming.

Alpaca-LoRA
7B (0.035 

s/token): The main 
differences between 
Python and JavaScript 
programming 
languages are that 
Python is an object-
oriented programming 
language, while 
JavaScript is a scripting 
language. Additionally, 
Python is an 
interpreted language, 
while JavaScript is a 
compiled language.

Stitched LLaMA 8B (0.037 s/token): Python and JavaScript are both high-level, general-purpose programming languages. 
However, there are several key differences between the two. 1. Syntax: Python is an interpreted language, while JavaScript is a 

compiled language. This means that the code written in Python is executed by an interpreter, which translates the code into machine-
readable instructions. In contrast, the code written in JavaScript is compiled into machine-readable code, which is then executed by the 
browser. 2. Length of code: Python code is generally shorter and more concise than JavaScript code. This is because Python is an
interpreted language, while JavaScript is a compiled language. This means that the code written in Python is executed by an interpreter, 
which translates the code into machine-readable instructions. In contrast, the code written in JavaScript is compiled into machine-
readable code, which is then executed by the browser. 3. Data types: Python is an object-oriented language, while JavaScript is a 
prototype-oriented language. This means that in Python, data is stored in objects, while in JavaScript, data is stored in prototypes. 4. 
Libraries: Python has a large library of built-in functions and modules, while JavaScript has a smaller library of built-in functions and 
modules. 5. User interface: Python is commonly used for developing web applications, while JavaScript is commonly used for creating 
interactive user interfaces. In summary, the main differences between Python and JavaScript are their syntax, length of code, data types, 
libraries, and use. Python is an interpreted language, while JavaScript is a compiled language. Python is an object-oriented language, 
while JavaScript is a prototype-oriented language. Python has a large library of built-in functions and modules, while JavaScript has a 
smaller library of built-in functions and modules. Python is commonly used for developing web applications, while JavaScript is 
commonly used for creating interactive user interfaces.

Instruction: What are the main differences between Python and JavaScript programming languages?

Figure H. Instruction-following comparison between Stitched LLaMA obtained by our ESTA and the individually fine-tuned anchors
(Alpaca-LoRA 7B and 13B) [5].
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