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7. Extended Illustration of Methodology
The objective of our proposed gradient reweighting ap-
proach, as detailed in Section 4, is to mitigate bias in the
fully connected (FC) layer during the CIL. This goal aligns
with the motivations in previous works such as [49, 56].
However, our proposed strategy differs significantly where
instead of implementing post-hoc corrections as in [49, 56],
we propose to directly adjust the gradient updates during
the learning phase, aiming to address the bias issue from the
source. Furthermore, our approach demonstrates the flexi-
bility in CIL by effectively addressing both intra-phase and
inter-phase imbalances. This sets our method apart from
existing strategies that predominantly target inter-phase is-
sues, thus limiting the applicability in real-world scenarios
characterized by non-uniform data distributions.

Algorithm 1 illustrates the entire procedure to learn a
new task T t.

7.1. Regularized Softmax Cross-entropy
In Section 4.1, we introduced the regularized softmax cross-
entropy to compensate for the side effect caused by gra-
dient reweighting during the learning phase. In this part,
we further provide a detailed illustration of where the issue

comes from. The main goal of gradient re-weighting is to
reduce the effect of imbalanced optimization between head
and tail classes by down-weighting the weight updates of
head classes. However, while this adjustment helps in em-
phasizing tail classes, it also inadvertently leads to increased
loss values for the head classes, resulting in larger gradients.
Specifically, the gradient of a head class input data (xk, yk)
with respect to each output logit zj can be calculated as
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where zj is the jth output logit and pj is the corresponding
softmax output. Attributing to the down-weight of gradients
to the head class yk, the output logit zyk and its softmax
pyk decreases during the training process. Consequently, it
results in an increase of the positive gradient norm ||1 �
pj ||, prompting the head class weight W yk to produce a
higher output logit value. Concurrently, since the total sum
of softmax outputs is constrained to 1, the decrease of pyk

leads to the rise of the negative gradient norm
P

j 6=yk
||pj ||,

driving the tail classes weight to output even lower scores.
Our method utilizes regularized softmax as in Equation 5,
which effectively mitigates this side effect by adding a per-
class offset ⇡j to the output logit

⇡j =

( njP
m nm

t = 1
min{nj ,n"}P
m min{nm,n"} t > 1

(14)

where t is the task index, nj is the number of training data
for class j, and n" denotes the exemplar budget per class.
Thus, the instance-rich classes have larger ⇡j with an in-
crease of softmax output pj to compensate for the side effect
of down-weighting the gradients during the training pro-
cess.

7.2. Imbalanced Catastrophic Forgetting
As described in Section 1, we argue catastrophic forget-
ting could also be imbalanced. In this part, we provide
further illustration and also present experimental results to
visualize this issue. In CIL, the forgetting problem mainly
comes from the unavailability of old classes’ training data
during the learning of new classes. However, as the train-
ing data is severely imbalanced, there is a significant vari-
ance in the amount of lost training data between head and
tail classes due to a fixed memory budget. During task t,
suppose we select ne exemplars per class, thus we have
|X j

e |  ne, 8j 2 Y1:t�1 (note that some classes may con-
tain less than ne training data). Given the class imbalance
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Figure 7. The forgetting rate (%) for one selected head class and
one tail class by comparing the LUCIR-2stage [22, 28] and our
method.

condition where nj � nk for a head class j and a tail class
k, it implies that a large volume of instances from head class
j become unavailable in comparison to tail class k in the
subsequent incremental learning phases nj�ne � nk�ne.
(e.g. consider the case where a tail class k has training data
nk < ne, then all of the training data for class k will be
preserved for entire CIL.) This poses a unique challenge
in CIL of imbalanced forgetting where head classes (with
more training data lost) potentially suffer more performance
degradation than tail classes (with less or even no training
data lost).

To visualize the imbalance forgetting issue, we perform
CIL on ImageNetSubset-LT following the implementation
details as described in Section 5.1. Specifically, we select
a tail class (class 1: 33 training images) and a head class
(class 2: 1017 training images) from the initial task 1 and
measure the forgetting rate Forg = Acc1 � Acci in each
subsequent learning phase i > 1. Acc is the accuracy on
test data belonging to that specific class (i.e. class 1 or
class 2) where Acci denotes incremental phase i and Acc1
is the accuracy in the initial phase when the class is firstly
observed. The result is shown in Figure 7. We observe the
head class suffers a higher performance degradation com-
pared to the tail class in LUCIR-2stage [22, 28], showing
the imbalanced catastrophic forgetting phenomenon. Our
method, with gradient reweighting and Distribution-Aware
Knowledge distillation (DAKD) loss as illustrated in Sec-
tion 4, significantly reduces the forgetting for both tail and
head classes while mitigating the imbalance issue. Specif-
ically, the DAKD effectively addresses this problem by de-
coupling the original knowledge distillation loss [21] into a
weighted sum of two components using a ratio � measured
by entropy on the lost training data distribution s with total
classes c as
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j=1 vj log(vj)

log(c)
vj =

sjPc
m=1 sm

(15)

Therefore, when � = 1 (balanced data loss), our DAKD
works equivalently as original knowledge distillation loss.

When � decreases, it prioritizes knowledge retention from
classes with greater data loss. Overall, the DAKD focuses
more on preserving the performance of head classes with a
greater loss of training data as well as allowing more plastic-
ity for tail classes, enabling them to adapt more effectively
to the current training data distribution.

8. Detailed Experimental Setup
8.1. Evaluation Metrics and Training Details
In this part, we first illustrate the evaluation metrics includ-
ing the average accuracy (ACC) and forgetting rate as used
in Section 5. Then we provide additional training details.

Evaluation Metrics: The average accuracy (ACC) [31]
considers the performance of all incremental learning
phases as

Ā =
1

N

NX

t=1

At

where At is the top-1 classification accuracy after learning
task T t on all classes seen so far. The forgetting rate [31],
also known as backward transfer (BWT), measures the per-
formance drops during CIL as calculated in
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where At
N refers to the classification accuracy on task t af-

ter learning task N . In general, an expected CIL model
should have higher average accuracy Ā " as well as lower
forgetting rate F̄ #.

Training Details: Our method is implemented with Py-
Torch [38] based on the framework provided in [28, 33].
Each experiment is run on a single NVIDIA A40 GPU with
48G memory. The class order is generated and shuffled us-
ing the identical random seed (1993) as in [28, 40]. Only
regular data augmentation technique is included such as
random flip and crop. (No AutoAugment [13] as imple-
mented in [11, 47]). To further ensure fair comparisons with
existing work, instead of obtaining the results from the orig-
inal publications, we reproduce the existing methods under
the same setting three times for each experiment and report
the average performance as illustrated in Section 5.1.

8.2. Exemplar Selection
In this part, we illustrate the exemplar setup used in Sec-
tion 5. In conventional CIL, there are two widely used
strategies for storing exemplars including (i) Fixed Mem-
ory (FM), and (ii) Growing Memory (GM). Specifically, the
FM uses a fixed buffer size |E| = B and split evenly for all
classes seen so far thus each class contains n" = B

c exem-
plars. As more classes are encountered, n" will decrease.
On the other hand, GM uses a fixed n" per class, thus the to-
tal exemplar size |E| = c⇥n" is growing when more classes



Datasets CIFAR100-LT ImageNetSubset-LT
Evaluation protocol LFS LFH LFS LFH

Total tasks N 10 20 5 10 10 20 5 10
iCaRL [40] 38.71 34.66 30.13 29.98 50.10 43.22 45.28 43.98
IL2M [5] 44.42 40.54 39.83 37.87 47.53 40.02 46.95 44.34
BiC [49] 41.59 36.41 34.57 31.08 47.92 45.53 47.78 41.05
WA [56] 43.69 37.58 35.66 33.02 48.83 46.71 48.29 42.24
SSIL [1] 43.25 35.28 33.90 23.16 50.62 41.41 40.00 41.73
FOSTER [47] 43.68 36.70 38.43 35.19 49.72 42.68 47.31 46.89
MAFDRC [11] 44.27 37.82 42.10 41.94 50.83 44.20 48.69 47.11
EEIL-2stage [10, 28] 45.34 41.03 39.95 38.85 50.39 43.57 50.93 48.37
LUCIR-2stage [22, 28] 47.83 36.01 45.10 43.35 53.47 47.67 54.88 53.38
PODNet-2stage [15, 28] 48.67 34.17 44.42 43.54 52.00 44.55 54.75 54.21
FOSTER-2stage [28, 47] 46.35 38.93 43.21 44.18 52.64 47.91 54.26 53.87
Ours 50.24 41.50 44.87 44.13 55.42 49.73 55.67 53.95

Table 3. Results of average accuracy (%) for Ordered CIL on CIFAR100-LT, ImageNetSubset-LT with imbalance factor ⇢ = 100, memory
budget n" = 20 evaluated under Learning From Scratch (LFS) and Learning From Half (LFH). Best and Second Best results are marked.

c are observed. Though FM is more practical and popular
in conventional CIL with balanced training data distribu-
tion, it poses two non-trivial questions in imbalanced CIL
including (a) how to allocate the fixed memory size B to
class-imbalanced data distribution, and (b) how to update
the memory buffer after observing new classes. Until now,
the FM-based exemplar selection is still under-explored in
imbalanced CIL (i.e. There lacks efficient exemplar selec-
tion strategies.)

In this work, we primarily follow the setup in [28] to use
GM with fixed n". Specifically, we select up to n" samples
per class after each incremental learning phase by applying
Herding algorithm [48] based on the class mean. Note that
for tail classes with the number of training data less than
n", we store all of their training data in the exemplar set.
Therefore, the exemplar set E could still exhibit the class-
imbalanced issue.

Later in Section 9.1, we also explore a variant of FM
setting by using dynamic n" in imbalanced CIL. Specifi-
cally, we set a fixed memory buffer size B and calculate the
n" = B

c after learning each task. Note that this case is still
different from the conventional FM setting as most classes
in long-tailed distribution will have fewer training samples
than n". However, we can ensure the total buffer size is
bounded with |E|  B.

8.3. The 2-Stage Implementation
In this part, we illustrate the implementation of the 2-stage
module [28] to integrate with existing conventional CIL
for experiments in Section 5. As proposed in [28], the 2-
stage framework is structured as follows: stage-1 focuses
on training the feature extractor and classifier using the en-
tire dataset (aligned with conventional CIL training with no
alternation). Subsequently, stage-2 involves the training of

an additional Learnable Weight Scaling (LWS) layer using
a class-balanced sampler.

Therefore, in our implementation of the 2-stage module,
each incremental phase is conducted in two steps. Initially,
we perform the original method with implementation de-
tails outlined in Section 5.1. Following this, an additional
training phase is introduced specifically to learn the Learn-
able Weight Scaling (LWS). During this phase, we fix pa-
rameters in the feature extractor and the classifier corre-
sponding to the previously learned classes. The implemen-
tation details of this training phase follow the [28], involv-
ing a fixed learning rate of 0.1 and 30 training epochs. Note
that in Table 1, we did not include the results for the original
LUCIR [22], EEIL [10], and PODNet [15] as their 2-stage
versions have been proved to be more effective for imbal-
anced CIL in [28]. However, we further performed the 2-
stage module on FOSTER [47] and compared it with the
original results as shown in Table 1.

9. Additional Experimental Results
In this part, we first present additional experimental results
under imbalanced CIL and then show the effectiveness of
our proposed gradient reweighting method even in conven-
tional CIL with balanced data distribution. All the exper-
iment setting follows the same implementation setups in
Section 5.1.

9.1. Results for Imbalanced CIL
Results on ImageNet-LT with 1,000 classes: We eval-
uate our method on large-scale datasets by constructing
ImageNet-LT with 1,000 classes from ImageNet [42] us-
ing imbalance factor ⇢ = 100. The experimental results
are shown in Figure 9. Notably, even in the context of
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Figure 8. The classification accuracy (%) on test data belonging to all classes seen so far at each incremental step by using the fixed
memory budget B 2 {500, 1000} on CIFAR100-LT and ImageNetSubset-LT with imbalance factor ⇢ = 100.

Hyper-parameter � 0 0.5 1.0 1.5 2.0 2.5 3.0 4.0 5.0 10.0
CIFAR100-LT (LFH, N = 10) 37.15 38.61 39.11 39.54 39.27 38.36 37.83 37.40 37.43 37.45

ImageNetSubset-LT (LFS, N = 20) 39.87 40.63 40.79 40.87 41.03 41.14 41.23 40.36 40.07 38.18

Table 4. Results of average accuracy of our proposed method by tuning hyper-parameter � 2 [0, 10] with fixed �b = 1.

Hyper-parameter �b 0.1 0.5 1.0 2.0 3.0 4.0 5.0
CIFAR100-LT (LFH, N = 10) 37.54 39.18 39.11 32.79 27.59 25.25 21.82

ImageNetSubset-LT (LFS, N = 20) 40.37 41.06 40.79 37.12 35.00 32.21 28.47

Table 5. Results of average accuracy of our proposed method by tuning hyper-parameter �b 2 [0.1, 5] with fixed � = 1.

Datasets CIFAR100 ImageNet-Subset
Evaluation protocol LFS LFH LFS LFH

Total tasks N 20 10 20 10
Exemplar Setup GM FM GM FM GM FM GM FM

iCaRL [40] 42.23 52.88 47.69 47.11 50.48 56.28 60.85 61.64
EEIL [10] 48.39 59.95 51.65 54.35 43.20 54.20 53.05 56.75
IL2M [5] 48.93 59.12 51.49 54.75 44.23 53.31 51.47 55.06
BiC [49] 52.12 57.47 33.56 48.55 51.68 61.27 58.57 62.32
WA [56] 51.28 56.73 35.62 49.13 49.87 62.94 56.95 61.82
SSIL [1] 50.84 57.66 43.52 47.58 48.74 58.29 59.30 59.35
LUCIR [22] 49.09 58.29 59.25 59.37 46.88 56.01 62.56 64.18
PODNet [15] 45.45 53.92 60.50 61.66 38.33 49.28 61.41 63.99
FOSTER [47] 51.90 63.37 59.54 67.02 56.79 69.42 63.82 66.25
MAFDRC [11] 52.83 65.68 58.44 66.21 54.63 70.18 62.13 65.47
Ours 54.30 64.03 59.31 68.70 59.32 69.56 67.32 67.20

Table 6. Results of average accuracy for conventional CIL on original CIFAR100 and ImageNet-Subset with fixed memory (FM) budget
B = 2, 000 and growing memory (GM) budget n" = 20. Best and Second Best results are marked.

this extensive dataset, our method outperformed existing
approaches at each incremental learning phase, demonstrat-
ing its efficacy in handling large-scale data in the real world.

Results with Ordered Long-Tailed CIL: In accordance
with [28], we implemented Ordered Long-Tailed CIL where
the learning process begins with the most frequent classes
(with most training samples) and progresses towards the
least frequent ones (with least training samples). This

scenario is aligned with many realistic applications where
learning typically starts with available common classes and
gradually shifts to more challenging samples. The results
on CIFAR100-LT and ImageNetSubset-LT with imbalance
factor ⇢ = 100 are summarized in Table 3. We observed
the results in ordered cases are typically better than the re-
sults in shuffled cases as shown in Table 1, which can be
attributed to the significant reduction of intra-class imbal-
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Figure 9. The classification accuracy (%) on test data belonging
to all classes seen so far at each incremental step on ImageNet-LT
with imbalance factor ⇢ = 100.

ance issue in this scenario. Despite this variation in learning
conditions, our method consistently demonstrated promis-
ing results, outperforming existing approaches in both or-
dered and shuffled long-tailed CIL without requiring the ad-
ditional training stage.
Results with Fixed Memory Budget: As described in Sec-
tion 8.2, we consider a variant of fixed memory budget B.
The results on CIFAR100-LT and ImageNetSubset-LT with
imbalance factor ⇢ = 100 and B 2 {500, 1000} are vi-
sualized in Figure 8. Together with the results shown in
Figure 4, we demonstrate the adaptability of our method
under both exemplar setups to achieve the best performance
at each incremental learning phase. However, as illustrated
in Section 8.2, while the total buffer size B is bounded, the
imbalanced CIL under a fixed memory budget usually intro-
duces a more pronounced class imbalance issue within the
exemplar set. Addressing this challenge remains a crucial
area for future algorithm development.
Tuning Hyparameters: As illustrated in Section 4, we in-
troduced two hyper-parameters in this work including (i) �
to control the magnitude of attenuation factor as in Equa-
tion 10, and (ii) �b to control the influence of knowledge
distillation in the integrated objective as in Equation 9. As
detailed in the experimental setup in Section 5.1, we use
� = 1 and �b = 1 for simplicity on all experiments to
show the effectiveness of our method even without hyper-
parameter tuning. In this part, we demonstrate that tun-
ing these two hyper-parameters can achieve better perfor-
mance. The results by tuning � and �b are summarized
in Table 4 and Table 5, respectively. For �, we observed
that a moderate increment from � = 0 gradually increases

performance while a large � results in performance degra-
dation. This observation is aligned with our findings as in
Section 4.2 where the model could under-fit on new classes
without � as the new classes receive less attention, and us-
ing large � will conversely result in prediction bias towards
new classes due to the inter-class imbalance issue in CIL.
Similarly, as �b becomes larger, there is a sharp decrease in
accuracy since the overly dominant knowledge distillation
component in the integrated objective function can obstruct
the effective learning of new classes. These observations
highlight the adaptability of our method to achieve poten-
tial improvements to accommodate various applications in
the real world.

9.2. Results for Conventional CIL
In this part, we highlight the effectiveness of our proposed
method even under the Conventional CIL setting with class-
balanced data distribution, where only the inter-phase im-
balance issue is present. The results on CIFAR-100 and
ImageNetSubset are summarized in Table 6 where we con-
sider both growing memory (GM) with n" = 20 and fixed
memory (FM) with B = 2, 000. Our method achieved
promising performance across both datasets and memory
setups. Notably, in the ImageNetSubset evaluations, our
method significantly outperformed existing approaches un-
der the GM setup, where the inter-phase imbalance is-
sue presents a more substantial challenge. Additionally,
we achieved promising performance under FM setup on
CIFAR-100 and ImageNetSubset datasets under both eval-
uation protocols with varied incremental phases. These re-
sults further demonstrate the adaptability and effectiveness
of our proposed method in a broader CIL context with vari-
ous learning conditions.

9.3. Long-tailed Recognition
In this section, we evaluate our gredient reweighting for
its efficacy in solving the imbalanced image classification
beyond CIL by conducting comparative analyses with es-
tablished methods in long-tailed recognition. We denote
our regularized softmax output illustrated in Section 4.1
as RS. Specifically, we train a ResNet-32 to classify the
100 classes in CIFAR100-LT with various imbalance factor
⇢ 2 {10, 50, 100} following the training protocol as in [14].
The results are summarized in Table 7. Our method shows
competitive performance even without the use of regular-
ized softmax output. Upon integrating the regularized soft-
max output, which further balances the learning process, we
consistently achieve improved classification accuracy and
outperform existing methods.

9.4. Computation and Memory Efficiency
Our framework employs a compact vector, denoted as �, for
the computation of accumulated gradients. To elucidate the



CIFAR100-LT
⇢ = 100 ⇢ = 50 ⇢ = 10

ROS [46] 36.32 41.28 55.12
Focal Loss [27] 38.91 43.26 55.08
LDAM [9] 40.82 45.68 57.32
CB Loss [14] 39.62 46.29 57.29
IB Loss [36] 43.62 46.80 58.01
BS Loss [41] 44.12 49.25 59.38
EQL v2 [45] 43.81 48.25 57.06
CMO [37] 43.54 47.92 58.97
Ours w/o RS 43.84 47.39 57.95
Ours 45.27 49.02 60.71

Table 7. Long-tailed recognition accuracy (%) on CIFAR100-LT
with imbalance factor ⇢ 2 {100, 50, 10}

storage usage, we consider the following detailed analysis.
Assuming � comprises N elements, where each element
is a floating-point number represented using 32 bits (or 4
bytes) of memory, the total storage requirement for � can
be quantified using the equation:

Storage� = N ⇥ 4(bytes) (16)

For CIL, N refers to the number of classes seen so far.
Consequently, for datasets with 100 classes such as CI-
FAR100 or ImageNetSubset, N = 100 at the last incre-
mental learning phase, rendering the storage used by � as
follows:

Storage� = 100⇥ 4 = 400(bytes) (17)

To provide a comparative perspective on this storage ef-
ficiency, we consider the storage required by a single RGB
image from the CIFAR dataset. Each CIFAR image, with a
resolution of 32 ⇥ 32 pixels and utilizing 8 bits (or 1 byte)
per pixel for each of the three RGB color channels, necessi-
tates the following storage

StorageCIFAR = 32⇥ 32⇥ 3 = 3072(bytes) (18)

The ratio of storage usage can be calculated as

Storage�
StorageCIFAR

=
400

3072
⇡ 0.13 (19)

Thus the total usage of storage for calculating � will be
around 1/10 of one single CIFAR image, while it brings
significant performance improvements as shown in our ex-
periments.

In terms of computational efficiency, our framework is
designed for end-to-end training. This integrated approach
sidesteps the substantial computational overhead typically
associated with decoupled training phases. For instance,
existing methods such as [28] require 30 additional epochs
for balanced fine-tuning. Our experimental results under-
score the substantial performance enhancements achieved
through our methodology. These improvements are not

merely computational but also extend to the accuracy and
efficiency of the training process, showing great potential
for facilitating high-effiency models in real-world applica-
tions.
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