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Supplementary Material

We organize our supplementary material as follows. In
Section 1, we provide additional implementation details
and comprehensive network architectures for our proposed
LMF-based ASSR methods. In Section 2, we conduct an
in-depth efficiency analysis of LMF-based ASSR methods
and the original ASSR methods. Section 3 showcases the
effectiveness of CMSR by providing additional details and
results. Finally, Section 4 delves into more visual results for
various ASSR scenarios.

1. More Implementation Details
In Table 1, we present the detailed network structures of our
LMF-based ASSR methods, namely LM-LIIF, LM-LTE,
and LM-CiaoSR. For reference, we also provide the net-
work architectures of the original INR-based ASSR meth-
ods, namely LIIF [2], LTE [3], and CiaoSR [1]. In the table,
the notation MLP = [580×256, 3× (256×256), 256×3]
represents an MLP architecture. Firstly, it includes an input
linear layer with input and output dimensions of 580 and
256, respectively. Additionally, there are three hidden lin-
ear layers, each with both input and output dimensions of
256. Finally, there is an output linear layer with input and
output dimensions of 256 and 3, respectively. Regarding
the activation function, we utilize the ReLU activation af-
ter every linear layer, except for the output linear layer in
the MLP, which does not use any activation function. The
notation Conv = [64 × 256], ks = 3 represents a convo-
lutional layer with input and output features of 64 and 256
dimensions, respectively, and a kernel size of 3.

Local ensemble is proposed in LIIF [2], which ensures
continuous prediction by merging the four predictions from
the top-left, top-right, bottom-left, and bottom-right latent
codes. Both our LMF-based ASSR methods and the refer-
ence methods utilize local ensemble in HR space:
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where x∗
i,j is any query coordinate closest to z∗, and v∗t is

the coordinate of z∗t . z∗t is one of the latent codes at the top-
left (tl), top-right (tr), bottom-left (bl), bottom-right (br)
corners center around z∗. A(v∗t′ , x

∗
i,j) refers to the area of

the rectangle between the coordinates v∗t′ and x∗
i,j , where

t′ is diagonally opposite to t (i.e., (1,1) to (-1,-1), (-1,1) to
(1,-1)). AR∗ represents the area of the rectangle R∗ whose
vertices are {tl, tr, bl, br}.

LIIF also introduces feature unfolding [2], which con-
catenates the nearby 3×3 feature vectors as the latent code:

z∗ = Concat({z∗k,l}k,l∈{−1,0,1}), (2)

where z∗k,l is one of the 3× 3 feature vectors center around
the latent code z∗. Both LIIF and CiaoSR require the use
of 3 × 3 feature unfolding in HR space, while LM-LIIF
and LM-CiaoSR only require 3 × 3 and 2 × 2 feature un-
folding in latent space, respectively. In contrast, both LTE
and LM-LTE replace the feature unfolding strategy with the
Local Texture Estimator [3], This estimator consists of a
frequency convolutional layer, a coefficient convolutional
layer, and an MLP for phase.

2. Efficiency Analysis
In this section, we present the computational analysis of
LIIF and LM-LIIF. These two methods are representative
as they focus on the fundamentals of continuous image rep-
resentation. We analyze upsampling an h ·w ·3 input image
with a scale factor s. Before decoding, the encoder gener-
ates h·w·64 feature maps using the input image. To quantify
the computational complexity of LIIF, we can formulate it
as the number of multiplications used by LIIF:

MulLIIF = 4(dindh + (k − 2)d2h + dhdout)s
2hw

= 1383424s2hw,
(3)

where din = 580 denotes the dimension of the MLP input,
which consists of coordinates, cells, and the latent code us-
ing 3×3 feature unfolding. dh = 256 represents the hidden
dimension of the decoding MLP, while dout = 3 represents
the dimension of the output pixel value. The depth of the
decoding MLP is denoted by k = 5.

To accomplish the same upsampling task, the number of
multiplications used by LM-LIIF can be formulated as:

MulLM-LIIF =(dindl + (kl − 1)d2l )hw+

4(dcdr + (kr − 2)d2r + drdout)s
2hw

=163488hw + 6592s2hw,

(4)

where din = 578 represents the dimension of the latent
MLP input, which consists of cells and the latent code us-
ing 3× 3 feature unfolding. dc = 20 represents the dimen-
sion of the render MLP input, which consists of the com-
pressed latent code, coordinates, and cells. The hidden di-
mension of the latent MLP and the render MLP are denoted
by dl = 208 and dr = 16, respectively. The depth of the
latent MLP and the render MLP are represented by kl = 2
and kr = 7, respectively.



Table 1. The network architectures of LMF-based ASSR methods and the reference methods. ∗ indicates the use of latent modulations.

Decoder Params Latent Latent space Render space
modulation

LIIF 355K × × MLP = [580× 256, 3× (256× 256), 256× 3]

LM-LIIF 170K 192 MLPl = [578× 208, 208× 208] MLPr = [20× 16∗, 5× (16× 16∗), 16× 3]

LTE 506K ×
Convfreq = [64× 256], ks3,
Convcoef = [64× 256], ks3,

MLPphase = [2× 128]
MLPr = [256× 256, 2× (256× 256), 256× 3]

LM-LTE 278K 256

Convfreq = [64× 128], ks3,
Convcoef = [64× 128], ks3,

MLPphase1 = [2× 64],
MLPl = [128× 288, 288× 288]

MLPphase2 = [2× 8],
MLPr = [16× 16∗, 7× (16× 16∗), 16× 3]

CiaoSR-1.4M 1.429M × Non-local attention module
MLPk = [580× 256, 3× (256× 256), 256× 576],
MLPv = [644× 256, 3× (256× 256), 256× 640],
MLPq = [640× 256, 3× (256× 256), 256× 3]

CiaoSR-3.1M 3.065M × Non-local attention module
MLPk = [1624× 256, 3× (256× 256), 256× 1620],
MLPv = [1804× 256, 3× (256× 256), 1800× 3],
MLPq = [1800× 256, 3× (256× 256), 256× 3]

LM-CiaoSR 753K 256

Non-local attention module,
MLPk = [260× 256, 256× 256],
MLPv = [324× 256, 256× 320],
MLPq = [576× 256, 256× 256],
MLPl = [320× 288, 288× 288]

MLPr = [34× 16∗, 7× (16× 16∗), 16× 3]
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Figure 1. The positive correlation between the means of shift mod-
ulation and the minimum rendering scale factors in LM-LTE.

Compare Eq. 3 and Eq. 4, it becomes apparent that
our LM-LIIF requires significantly fewer multiplications
than LIIF, and the reduction in multiplications MulLIIF −
MulLM-LIIF increases as the scale factor increases. For large
scales, most of the multiplications in LM-LIIF are attributed
to the latent MLP, which remains unaffected by the scale
factor. Even for identity mapping (×1 SR), our LM-LIIF
reduces the number of multiplications by over 87.7%.

3. Details and Results on CMSR

In Figures 1 and 2, we visualize the positive correlation be-
tween the means of shift modulation and the minimum ren-
dering scale factors in two different methods, LM-LTE and
LM-CiaoSR. Specifically, we uniformly sample 100 means
of shift modulation from the range of [0, 0.5] and measure
their corresponding minimum scale factors using the LR
images from the training set. The results clearly indicate a
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Figure 2. The positive correlation between the means of shift mod-
ulation and the minimum rendering scale factors in LM-CiaoSR.

positive correlation between the means of shift modulation
and the minimum scale factors in both LM-LTE and LM-
CiaoSR methods. An intriguing observation is that the min-
imum scale factors in LM-CiaoSR are relatively larger than
those in LM-LTE, suggesting superior SR performance and
generalization of LM-CiaoSR over LM-LTE. These results
provide valuable and comprehensive insights into the ef-
fectiveness of latent modulation and the underlying mecha-
nisms and performance characteristics of INR-based ASSR
methods.

In Algorithm 1, we present the detailed algorithm for
creating the Scale2Mod table, denoted as T = {s0 :
[ms0

min,m
s0
max], . . . , sK : [msK

min,m
sK
max]}. The purpose of

this table T is to map a given scale factor sk to the range
of means of shift modulation [msk

min,m
sk
max]. For any input

pixel whose mean of shift modulation m satisfies msk
min ≤

m ≤ msk
max, we render this pixel with its minimum scale



Algorithm 1: Creating Scale2Mods table for LMF
Input : LR images {I0, . . . , IJ}, MSE threshold a,

common scale factors {s0, . . . , sK},
means of shift modulation
{0, u, 2u, . . . , 1} sampled with interval u

Output: Scale2Mods table T = {s0 :
[ms0

min,m
s0
max], . . . , sK : [msK

min,m
sK
max]}

1 for Ij ∈ {I0, . . . , IJ} do
2 IsKj = RendersK (Ij );
3 Compute means of shift modulation Mj for Ij ;
4 for sk ∈ {s0, . . . , sK} do
5 I

s′K
j = Bilinear sK

sk

(Rendersk(Ij
));

6 [msk
min,m

sk
max] = T (sk);

7 for ml ∈ {0, u, 2u, . . . , 1} do
8 Create a filter

Filter(I) : ml − u
2 ≤ M ≤ ml +

u
2 ;

9 Errork,l =

MSE(Filter(IsKj ), F ilter(I
s′K
j ));

10 if Errork,l ≤ a then
11 msk

max = Min(msk
max,ml);

12 m
sk+1

min = msk
max;

13 else
14 break;
15 end
16 T (sk) = [msk

min,m
sk
max];

17 end
18 end
19 end
20 return T ;

factor sk by querying the table. To create a Scale2Mod ta-
ble with a specified MSE threshold a, we follow the steps
outlined below. For each LR image Ij ∈ {I0, . . . , IJ} from
the training set, we render Ij with the maximum scale sK to
obtain the fully rendered image IsKj . Also, we compute the
means of shift modulation Mj corresponding to Ij . Next,
for each scale factor sk ∈ {s0, . . . , sK} and each mean of
shift modulation ml ∈ {0, u, 2u, . . . , 1}, we calculate the
MSE between the pixels in the fully rendered image IsKj
and the pixels in the image rendered with sk followed by
bilinear interpolation with sK

sk
. Notably, we only compute

the MSE for any pixel whose corresponding mean of shift
modulation satisfies the condition Abs(m−ml) ≤ u

2 . If the
MSE result is less than or equal to the MSE threshold a, we
update the msk

max and m
sk+1

min in T using the current mean of
shift modulation ml. This process is repeated for each LR
image in the training set, enabling us to create a generalized
Scale2Mod table T .

In Algorithm 2, we demonstrate the detailed algorithm
for CMSR. Given an LR image ILR, a target upsampling

Algorithm 2: Controllable Multi-Scale Rendering
Input : LR image ILR, target scale factor starget,

Scale2Mods table T = {s0 :
[ms0

min,m
s0
max], . . . , sK : [msK

min,m
sK
max]}

Output: SR image ISR

1 Compute means of shift modulation MLR for ILR;
2 Initialize s−1 = 1, Is−1

= ILR;
3 for sk ∈ {s0, . . . , sK} do
4 if sk > starget then
5 ISR = Bilinear starget

sk−1

(Isk−1
);

6 Create a filter Filter(I) : M ≥ m
sk−1
max ;

7 Filter(ISR) =
Renderstarget

(Filter(ILR));
8 break;
9 end

10 Isk = Bilinear sk
sk−1

(Isk−1
);

11 [msk
min,m

sk
max] = T (sk);

12 Create a filter Filter(I) : msk
min ≤ M ≤ msk

max;
13 Filter(Isk) = Rendersk(Filter(ILR));
14 if ∀m ∈ MLR,m <= msk

max then
15 ISR = Bilinear starget

sk

(Isk);

16 break;
17 end
18 end
19 return ISR;

scale factor starget, and a Scale2Mods table T , we proceed
as follows. Firstly, we compute the means of shift modula-
tion Mj corresponding to Ij , and initialize s−1 as 1, Is−1

as ILR. For each scale factor sk ∈ {s0, . . . , sK}, we check
if sk is greater than starget. If it is, we upsample the result
from the last scale sk−1 using bilinear interpolation with
starget

sk−1
. We then replace the unrendered pixels in this bilin-

ear upsampled result with the corresponding pixels rendered
with starget. On the other hand, if sk is less than or equal to
starget, we upsample the last result Isk−1

using bilinear in-
terpolation with sk

sk−1
to obtain the current result Isk . Next,

we query the Scale2Mods table T to obtain the range of
means of shift modulation [msk

min,m
sk
max]. For the current

scale si, we only need to render the pixels whose means of
shift modulation fall within this range [mi

min,m
i
max]. We

repeat the above process iteratively until we obtain the fi-
nal SR result or until all pixels have been rendered by LMF.
This CMSR algorithm ensures that LMF takes into account
the content-awareness of the LR image, allowing for effec-
tive and efficient SR with satisfactory visual quality.

For an in-depth analysis of the computational savings af-
forded by CMSR, Table 2 provides the MACs results on
DIV2K validation set of the latent MLP and the render MLP
with or without the final CMSR. EDSR-b [5] is utilized as
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Figure 3. Qualitative comparison for using Scale2Mod tables with different MSE thresholds in CMSR. All of the ASSR methods use
EDSR-b as the encoder.

Table 2. Ablation study (MACs results on DIV2K validation set)
on the latent MLP and the render MLP with and w/o CMSR.

Method Network CMSR ×2 ×4 ×8 ×16

LIIF Decoder - 3.567T 3.567T 3.567T 3.567T
LM-LIIF Latent MLP - 107.92G 26.98G 6.73G 1.67G
LM-LIIF Render MLP × 17.41G 17.41G 17.37G 17.23G
LM-LIIF Render MLP ✓ 16.30G 13.64G 12.41G 3.48G

the encoder. The results reveal that, particularly at scales 8
and 16, the computational cost is primarily attributable to
the render MLP, and CMSR can significantly reduces the
computations for the render MLP at these scales.

In Table 3, we further investigate the effectiveness of us-
ing the means of shift modulation as the indicators of signal
complexity. Here, we manually adjust the means of shift
modulation by ±0.2 when used in CMSR. Utilizing EDSR-
b [5] as the encoder and LM-LIIF as the decoder, the re-
sults validate that querying rendering scales based on pre-
cise means of shift modulation achieves an optimal balance
between PSNR performance and computational efficiency.

In Figure 3, we present the qualitative comparison of us-
ing Scale2Mod tables at varying MSE thresholds in CMSR.
Specifically, we experiment with thresholds at 2 × 10−5,
1 × 10−4, and 5 × 10−4. All of the ASSR methods uti-
lize EDSR-b [5] as the encoder, and our LMF-based ASSR
methods utilize LM-LIIF as the decoder. As depicted in the
figure, setting the MSE threshold of 2 × 10−5 in CMSR

Table 3. Ablation study (PSNR/MACs of the render MLP on
DIV2K validation set) on the means of shift modulation (referred
to as “Mean”) in CMSR.

MSE thresh. Query ×2 ×4 ×8 ×16

1× 10−4 Mean
34.62/

13.63G
28.98/

11.71G
25.39/
8.35G

22.62/
2.50G

2× 10−5 Mean - 0.2
34.53/
14.88G

28.98/
16.04G

25.40/
14.78G

22.62/
2.68G

2× 10−5 Mean + 0.2
34.65/
17.41G

28.99/
17.40G

25.40/
15.45G

22.62/
4.28G

2× 10−5 Mean
34.65/
16.30G

28.99/
13.64G

25.40/
12.41G

22.62/
3.48G

yields the same visual quality as LM-LIIF without CMSR.
Notably, further increasing the MSE thresholds to 1× 10−4

and 5×10−4 maintains satisfactory visual quality while sig-
nificantly reducing the computational cost.

4. More Visual Results

In this section, we demonstrate additional visual results ob-
tained from test sets to showcase the effectiveness of our
LMF-based ASSR methods. Figure 4 illustrates the ap-
plication of ASSR methods on the challenging task of ex-
treme large-scale SR, specifically ×30 SR. For all the ASSR
methods showcased, SwinIR [4] is used as the encoder. As
depicted in the figure, LMF, as a continuous image repre-
sentation, excels at producing sharp edges and realistic tex-
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Figure 4. Qualitative comparison for ×30 SR. All of the ASSR methods use SwinIR as the encoder.

tures when dealing with such extreme scales, outperforming
the bicubic interpolation method by a significant margin.

In Figure 5 and Figure 6, we present additional qualita-
tive comparisons for ASSR using EDSR-b [5] and RDN [6]
as the encoders, respectively. As illustrated in the figures,
our LMF-based ASSR methods achieve visual quality com-
parable to that of the original ASSR methods in most cases,
regardless of the encoder used.
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Figure 5. Qualitative comparison for ASSR. All of the ASSR methods use EDSR-b as the encoder.
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Figure 6. Qualitative comparison for ASSR. All of the ASSR methods use RDN as the encoder.


	. More Implementation Details
	. Efficiency Analysis
	. Details and Results on CMSR
	. More Visual Results

