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We report additional ablation experiments in Sec. 1. We
also present more qualitative results on the video captioning
tasks in Sec. 2. And in Sec. 3, we show more dataset-specific
implementation details and hyper-parameters. Finally, we
discuss some limitations and future works in Sec. 4.

1. Additional Experiments

Memory bank compression at different spatial levels.
In Table 10, we show comparison results of compressing
the memory bank at different spatial levels (frame-level vs.
token-level) on the LVU [1], Breakfast [2] and COIN [3]
datasets. For the frame-level compression, we calculate the
cosine similarity between adjacent frame features and av-
erage the frame-level features with the highest similarity.
For the token-level compression, the cosine similarity is cal-
culated between tokens at the same spatial location across
the entire temporal axis, given that each frame-level feature
contains multiple tokens at different spatial locations. The
results indicate that token-level compression consistently
surpasses frame-level compression in performance. Partic-
ularly, on the Breakfast dataset, the token-level surpasses
the frame-level by 6.5% in top-1 accuracy. This superiority
can be attributed to the importance of recognizing the object
type of breakfast in videos. And token-level compression can
help preserve much more fine-grained spatial information
and details.

Inference time of different input frames In Figure 6, the
inference time of MA-LMM increases linearly with respect
to the frame lengths, due to its auto-regressive design of
processing video frames sequentially. In contrast, directly
concatenating frame-level features takes much longer time
and higher GPU memory consumption, since it needs to
process all video frames simultaneously.

Table 10. Memory bank compression at different spatial levels.

Spatial Level LVU Breakfast COIN

Frame-level 61.8 86.5 91.1
Token-level 63.0 93.0 93.2
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Figure 6. Inference time vs. input frame length.

2. More Qualitative Results
Our model’s enhanced capabilities in video captioning are
further showcased through additional visualization results
in Figure 7. Here, our MA-LMM significantly outperforms
Video-LLaMA [4] in generating detailed and accurate sen-
tence descriptions. For instance, in the first video, our model
precisely describes the action as "remove the onion rings
and place them on the paper towel," capturing the entire
action steps, while Video-LLaMA’s description lacks this
completeness, notably missing the crucial action of remov-
ing the onion rings. In the second video example, our model
distinguishes itself by accurately identifying subtle details
such as specific ingredients: chili powder, salt, and garlic
powder, which Video-LLaMA overlooks. This highlights
the enhanced capability of our MA-LMM in recognizing and
describing fine-grained details.

3. Experiment Details
We show the details of hyper-parameters in the following
table for different tasks and datasets. For all the experi-
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add garlic powder chili powder paprika salt cayenne pepper buffalo wing sauce to the wings and mix
coat the chicken wings with the sauce
add chili powder salt garlic powder onion powder and paprika to the chicken and mix

Ground-Truth:
Video-LLaMA:

Ours:

remove the onions and place on paper towel
fry the onion rings in oil
remove the onion rings from the oil and place them on a paper towel

Ground-Truth:
Video-LLaMA:

Ours:

Figure 7. Visualization results on the video captioning task.

ments, we use a cosine learning rate decay. Table 11 shows
the hyper-parameters for the long-term video understand-
ing task. For the LVU dataset, we follow the same practice
in [5, 6], we sample 100 frames of 1 fps for each video clip.
For the Breakfast [2] and COIN [3], we uniformly sample
100 frames from the whole video. Table 12 shows the hyper-
parameters on the MSRVTT-QA [7], MSVD-QA [7], and
ActivityNet-QA [8] datasets for the video question answer-
ing task while Table 13 presents the hyperparameters on the
MSRVTT [9], MSVD [10], YouCook2 [11] datasets for the
video captioning tasks.

4. Limitation and Future Work
Since our model takes in video frames in an online manner,
leading to reduced GPU memory usage, but at the cost of
increased video processing time. This trade-off becomes
particularly noticeable with extremely long videos, where
processing times can become significantly prolonged. To
mitigate this issue, we suggest a hierarchical method to
process extremely long-term video sequences. This strategy
involves dividing extensive videos into smaller segments
and then processing each segment sequentially in an auto-
regressive fashion as we present in the main paper. Then
we can employ additional video modeling techniques to
model inter-segment relationships. This method aims to
strike a balance between memory efficiency and processing
speed, making it a practical solution for long-term video
understanding.

For the future work, there are several potential aspects
to further enhance the model’s capabilities. First, replac-
ing the existing image-based visual encoder with a video
or clip-based encoder can naturally enhance the model’s
ability to capture short-term video dynamics. This provides

a better representation of the video’s temporal dynamics.
Second, the model’s overall performance in understanding
videos can substantially benefit from the pre-training stage
on large-scale video-text datasets. This approach is a com-
mon practice in existing research and has proven effective in
enhancing generalization capabilities. Finally, the flexibility
inherent in our model’s architecture allows for the incorpora-
tion of a more advanced LLM as the language decoder. This
integration offers a clear opportunity for boosting the final
performance, making our model more effective in interpret-
ing and responding to complex video content.

Table 11. Hyperparameters of different datasets on the long-term
video understanding task.

Dataset LVU Breakfast COIN

LLM Vicuna-7B
Epochs 20
Learning rate 1e-4
Batch size 64
AdamW β (0.9, 0.999)
Weight decay 0.05
Image resolution 224
Beam size 5
Frame length 100
Memory bank length 20

Prompt

“What is the
{task} of the
movie?”

“What type
of breakfast
is shown in
the video?”

“What is the
activity in
the video?”



Table 12. Hyperparameters of different datasets on the video ques-
tion answering task.

Dataset MSRVTT MSVD ActivityNet

LLM Vicuna-7B
Epochs 5
Learning rate 1e-4
Batch size 128
AdamW β (0.9, 0.999)
Weight decay 0.05
Image resolution 224
Beam size 5
Frame length 20
Memory bank length 10
Prompt “Question: {} Short Answer:”

Table 13. Hyperparameters of different datasets on the video cap-
tioning task.

Dataset MSRVTT MSVD YouCook2

LLM Vicuna-7B
Epochs 10
Learning rate 1e-5 1e-5 1e-4
Batch size 128
AdamW β (0.9, 0.999)
Weight decay 0.05
Beam size 5
Image resolution 224
Frame length 80
Memory bank length 40
Prompt “what does the video describe?”
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