
NRDF: Neural Riemannian Distance Fields for Learning Articulated Pose Priors

Supplementary Material

In the following, we start with proving the propositions
in Sec. A and discuss the relationship to Riemannian Flow
Matching in Sec. A.3. Then, we present our user study
about perceptual pose metrics in Sec. B, followed by imple-
mentation details in Sec. C and additional results in Sec. D.

A. Proofs & Theoretical Discussions
A.1. Proof of Prop. 1
Before proceeding with the proof let us recall the main
proposition.

Proposition 1 (Quaternion-egrad2rgrad). For the quater-
nion manifold, the projection and mapping onto the tangent
space of the canonical unit quaternion e =

⇥
1 0 0 0

⇤>

(egrad2rgrad in Eq. (2)) takes the form:

⇧q(v) = Pv � e>Pv

1 + q>e
(q+ e) (15)

=

2

664

0 0 0 0
�q2/(1 + q1) 1 0 0
�q3/(1 + q1) 0 1 0
�q4/(1 + q1) 0 0 1

3

775Pv, (16)

where v 2 R
4 and P := P(q) = I� qq>.

Proof. First, note that the quaternion q is also the normal
vector at point q. Hence, the projection of any ambient vec-
tor onto the tangent space of a quaternion can be obtained
by the standard projection onto the plane defined by the nor-
mal. In other words, the orthogonal complement of the tan-
gent plane is the line in the direction of q. Hence, we can
project any ambient vector v 2 H1 onto TqH1 as:

(v � qq>v) = (I� qq>)v = P(q)v. (17)

Next, we need to rotate P(q)v to align with the identity
tangent space, TIM or as in the proposition, TeM. To do
so, we utilize the discrete connection on S3, which can be
obtained by rotation of tangent planes. Since the tangent
planes at q and e are defined by q and e themselves, all
we need to do is to find the linear map, i.e. a rotation, that
aligns q onto e. This is the typical vector-rotation formula
in 4-space and is given by:

v � e>v

1 + q>e
(q+ e) (18)

Plugging in e =
⇥
1 0 0 0

⇤> and re-arranging yields
the matrix form given in the proposition. Note that this is

unique up to rotation around e and well connects to the non-
uniqueness of parallel transport1.

A.2. Proof of Prop. 2
We re-state Prop. 2 of the main paper before delving into
the proof.

Proposition 2 (Distance preservation). Let P be a distribu-
tion over domain [0, 1], ✓ 2 D a data example, ✓̂ 2 H

K
1 the

output of Alg. 1 with input (✓,P), and d = d(✓, ✓̂). Then,
for the distribution of resulting distances holds p(d) = P .

Proof. Our proof closely follows the steps in our algorithm
where we sample a Gaussian vector of magnitude h, project
it on the 3-sphere (where the distribution is uniform) and
take steps. In the sequel, we prove each step.

Definition 9. A vector v 2 R
n is said to be radially sym-

metric if 8A 2 O(n),v
d
= Av.

Lemma 1. Let v 2 R
n be a radially symmetric random

vector. Then v/kvk ⇠ U(Sn�1).

Proof. Let A 2 O(n) denote an orthogonal matrix and
Proj be the projection onto Sn�1. Then the following
holds:

Proj(v) :=
v

kvk
d
=

Av

kvk = Proj(Av). (19)

Thus, the random vector v/kvk takes all its values over
Sn�1 and is radially symmetric. This is exactly the def-
inition of U(Sn�1), the uniform distribution over Sn�1.
A more rigorous proof involves geometric measure theory,
which is beyond the scope of this work. We refer the reader
to [46] for further details.

Showing that v after normalization follows a uniform
distribution on the unit sphere in T✓S , we move to the sec-
ond part, where k✓ � h · vk = h since kvk = 1 and
h · v 2 T✓S for any h > 0. In other words, h moves v
towards/away from the base ✓.

Lemma 2. Let v 2 T✓HK
1 . Using the ambient space of R4

and kvk = 1, for all t:

d (✓,Exp✓(h · v)) = hkvk, (20)

in a sufficiently small interval (respecting the cut-locus),
where d(·, ·) denotes the geodesic distance.

1The hairy ball theorem states the nonexistence of a global parameter-
ization of any continuously varying basis vector of TxS on all of S.

Proof. The proof follows the do Carmo, “Riemannian Ge-
ometry”, Proposition 3.6 [28].

Since by this lemma, the exponential map on the sphere
preserves distances to the base within [0, 1]2, it follows that
d(✓0

,✓) = h. With a similar argumentation, when h ⇠ P ,
d(✓0

,✓) ⇠ P .

How are the sample points distributed?. While our al-
gorithm guarantees that the distances attained as a result of
sampling preserve the initial choice of distance distribution,
the distribution of the samples themselves can undergo dis-
tortion, i.e., they can follow a complicated distribution on
H

K
1 . Naturally, it is of interest to also understand how the

samples are actually distributed on H
K
1 . While we cannot

provide an explicit analytical form, we will provide an intu-
ition into their distributions below, by following the exposi-
tion in [30].

Quaternions look like SU(2), a Lie group isomorphic
to SO(3). Their Lie algebra (tangent space) su(2) is iso-
morphic to the Lie algebra so(3). Let us denote the Lie
algebra of quaternions by h. Being the direct product of
(non-Abelian) Lie groups, HK

1 is also a Lie group, with a
Lie algebra hK . The adjoint representation of x 2 hK ,
adx(y), is the matrix representation of the map [x,y] called
the Lie bracket. For quaternions adx is the linear represen-
tation of this map. In our sampling algorithm (Alg. 1, to
explicitly control the distance distribution, we first sample
v ⇠ N (0, I) in the Lie algebra of ✓. We then normal-
ize it yielding a uniform distribution on the 3-sphere and
compose it with Gaussian sampled scalars h, resulting in
a Gaussian distribution radially and uniform distribution in
terms of direction: v/kvk ⇠ U(S3

h) and kvk2 ⇠ N (0, 1).
We call this tangent distribution r(v). Next, we use the ex-
ponential map to push r wrapping the samples on the man-
ifold resulting in our wrapped uniform-spherical distribu-
tion:

p(✓) =
X

v2hK

Expµ(v)=✓

r(v)
��J�1

�� , (21)

where J is the Jacobian map, whose determinant is the
change of volume:

��J�1
�� := det

 1X

k=0

(�1)k

(k + 1)!
adkx

!
. (22)

Intuitively, J linearly relates the tangent spaces and as such
can be computed, similar to Eq. (9), via the parallel trans-
port. As a result, we lose the simple form of the distribution
in the tangent space and can only arrive at the final distribu-
tion via this push-forward operation.

2Note that, a common mistake is to assume that all distances are pre-
served. This is not true and only the distances to the base of the Exp/Log
map is preserved.

A.3. Riemannian Flow Matching (RFM) vs. NRDF
Our training strategy resembles the extension of a recent
state-of-the-art generative model, Flow Matching (FM) [44]
onto Riemannian manifolds, known as, Riemannian Flow
Matching (RFM) [21]. The differences lie in the sampling
of training data and time steps as well as the way the flow is
computed / predicted. In what follows, we will briefly sum-
marize RFM and make the connection to our model NRDF.
We will begin by recalling certain definitions.

Definition 10 (Riemannian CNF). A CNF 't(·) : M!M
on the smooth manifold M is defined by integration along
a time-dependent vector field vt(x) 2 TxM: '̇t(x) =
vt('t(x)), parameterized by t 2 [0, 1], where '0(x) = (x).

Definition 11 (Probability path). Let P(M) denote the
space of probability distributions on M. A probability path
⇢t : [0, 1] ! P(M) interpolates between two distributions
⇢0, ⇢1 2 P(M) indexed by t 2 [0, 1]. ⇢t is said to be gen-
erated by 't if it pushes forward ⇢0 to ⇢1 following vt, i.e.
⇢t = ['t]#(⇢0).

Definition 12 (RFM). Given a probability path ⇢t, subject
to the boundary conditions ⇢0 = ⇢data and ⇢1 = ⇢prior, as
well as an associated flow 't, learning a CNF by directly
regressing vt through a parametric, neural network g� , is
called Riemannian flow matching.

Definition 13 (Riemannian Conditional FM). Unfortu-
nately, the vanilla RFM objective is intractable as we do not
have access to the closed-form ut generating ⇢t. Instead,
we can regress g� against a tractable conditional vector
field vt(xt | z), generating a conditional probability path
⇢t(xt | z) which can recover the target unconditional path
by marginalization:

vt(x) =

Z

M
vt(x | z)⇢t(x | z)q(z)

⇢t(x)
dvolz. (23)

Chen & Lipman then define the following Riemannian con-
ditional FM (RCFM) objective for learning as:

LRCFM (�) = Et,q(z),⇢t(xt|z)d(g�(t,xt), vt(xt, z))
2
,

(24)
whose gradient is the same as that of RFM. Here, t 2
U(0, 1) and d(·, ·) is the geodesic distance.

A simple variant of RCFM makes a particular choice of
time scheduling, linearly decreasing the geodesic distance
between xt and x1 arriving at:

Et,q(x1),p(x0)

����vt(xt, t) + d(x0,x1)
grad d(xt,x1)

kgrad d(xt,x1)k2g

����
2

g
(25)

This form will closely relate to our work as we clarify be-
low.

Algorithm 2 Training Riemannian Flow Matching for
Learning on Articulated Bodies

Input: Base distribution p(✓0), target q(✓1), initial param-
eters �0 of a network g�

Output: Trained weights �
1: while (not converged) do
2: Sample t ⇠ U(0, 1)
3: Sample training pose ✓1 ⇠ q(✓1)
4: Sample noisy pose ✓0 ⇠ p(✓0)
5: ✓t = Exp✓0

(t · Log✓0
(✓1)) (cf . Eq. (26))

6: Update �t by minimizing LRCFM in Eq. (25)
7: end while

NRDF & RFM. In our work, we consider RFM on the
product manifold of quaternions where M ⌘ H

K
1 ,x ⌘ ✓,

and use the associated operators. We present in Alg. 2 the
Riemannian Flow Matching adapted to our problem, artic-
ulated pose estimation. Note that, there are two fundamen-
tal differences: (i) the sampling of RFM and our sampling
in Alg. 1, and (ii) the way the gradients are obtained. We
now have a closer look into this.
Sampling. As seen in Alg. 2, RFM samples time uniformly,
t ⇠ U(0, 1), and a target pose is obtained as:

✓t = Exp✓0
(t · Log✓0

(✓1)), (26)

where ✓1 ⇠ q(✓1) is the data distribution and ✓0 ⇠ p(✓0) is
the noise. Instead, our sampling algorithm presented in the
main paper obtains a sample that is h away from a training
pose as:

✓̂ Exp✓(h · v), (27)

where v is directly sampled in the tangent space and nor-
malized, and h ⇠ P for arbitrary P over R+. In contrast to
RFM, we fix d(✓,v) = 1 through normalization and thus,
d(✓̂,✓) = h (explicit control over distance). Also note the
time dependence. As our loss does not compute an explicit
expectation over time, we can pre-compute all our train-
ing variables (nearest neighbors and the distances) offline.
Having nearest neighbors as target distribution is unique to
our work. As shown in Alg. 3, this greatly simplifies the
training loop leading to stable and fast training. Moreover,
note that, such pre-computation also allows for updating the
nearest neighbor at each iteration during training.
Obtaining gradients. RFMs neural network mini-
mizes Eq. (25) by explicitly predicting the steps. When
we would use our sampler from above, d(✓0,✓1) = 1
would hold, and the network would be trained to the
distance, whose derivation (by backpropagation) provides
grad d(✓t,✓1)

kgrad d(✓t,✓1k2
g

, which is the gradient of the distance field.
Thus, in this case, the gradient of our network would coin-
cide with the prediction of the flow matching network. Note
that even with the flow matching sampling, the flow match-
ing network prediction points in the same direction as the
distance field gradient, it is just scaled by d(✓0,✓1) 6= 1.

Algorithm 3 Neural Riemannian Distance Fields for Learn-
ing Articulated Pose Priors

Input: Distribution P , target distribution q(✓), initial pa-
rameters � of a network f�

Output: Trained weights �
1: Get training data samples D0 via Alg. 1
2: Search nearest neighbour ✓0 and compute d(✓,✓0) for

all ✓ 2 D0

3: while (not converged) do
4: Sample a training pose ✓i from D0

5: Update � by minimizing
6: kf�(✓i)�min✓02D d(✓i,✓0)k
7: end while

B. User Study for Evaluation Metrics

Previous studies [19, 43] have highlighted a significant
disparity between perceptual pose distance and commonly
used metrics, such as differences in joint locations and ori-
entations. The neural distance field model uses a certain
distance metric to learn the relation between an arbitrary
pose and the manifold of plausible poses by finding the
nearest neighbor on the manifold. Consequently, NRDF re-
lies on the distance metric possessing specific properties:
1) the distance metric is well-defined, and continuous and
2) the distance metric is close to human perception. To as-
sess these criteria, we conducted a user study comparing
various metrics, including orientation, Euclidean-based dis-
tance metrics, and a combination of both. We now define
each distance metric used in our user study.
Orientation-based metrics. We take the distance metric
used by Pose-NDF [63] as the candidate metric, denoting as
�ql

p. We also adopt he quaternion geodesic distance �ql
g ,

which has a more explicit physical interpretation and cov-
ers a wider range of values. For both metrics, we further
calculate the distance between noisy poses and their nearest
neighbor in global (relative to the root) frames, denoted as
�qg

p and �qg
g , respectively.

Euclidean-based metrics. Our Euclidean-based metrics
involve calculating the average Euclidean distance over all
body joints and a specific set of surface markers, denoted as
j2j and m2m respectively.
Combinations of orientation and Euclidean. In our ob-
servations, Euclidean-based metrics preserve the accurate
overall shape of the body pose. However, they fall short
of preserving the local twists of certain body joints. On
the other hand, orientation-based metrics preserve precise
local twists, yet they exhibit sensitivity to numerical val-
ues, resulting in divergent rotations even when the numeri-
cal values are close. To combine the strengths of both ap-
proaches, we introduce a hybrid metric, specifically defined
as �q+m2m = m2m+�q�qg

g . This hybrid metric aims to
leverage the advantages of Euclidean and orientation-based
metrics, striking a balance that combines the faithful rep-

Figure 5. User study for pose similarity assessment: In our user
interface, participants rank the similarity between a query pose
(green) and its nearest neighbors (blue) from the AMASS dataset.
These neighbors are obtained using different distance metrics.

resentation of the overall pose shape with the meticulous
preservation of local joint twists. We set �q = 0.5.
User study. We selected �ql

p, �qg
g , m2m and �q+ m2m

as final candidates. We prepare 52 questions, each com-
prising the noisy pose and 4 NNs queried by a correspond-
ing distance metric. Options are randomly shuffled in each
question. As shown in Fig. 5, users ranked the options from
most similar to least similar, with the flexibility to assign
the same rank to multiple options.
Result analysis. From a total of 54 responses, 32.79% of
users identified m2m as the most similar, while 30.09% fa-
vored �q + m2m. For the second most similar, 29.72%
preferred �q + m2m, and 27.13% chose �qg

g . Following
this, we use m2m and �q+ m2m as evaluation metrics for
the ablation studies.

C. Implementation Details
In this section, we introduce the experimental setup for data
preparation, network training, baselines, and optimization-
based downstream tasks such as partial-IK solver and
image-based pose estimation.

C.1. Data Preparation

Training data. For training, we use a subset of the
AMASS [45]. We follow the training split of AMASS used
in VPoser [51] and Pose-NDF [63] and assume that the
AMASS training set can sufficiently explain a comprehen-
sive and valid human pose manifold.

To pre-process the AMASS dataset, we crop the cen-
tral 80% of each motion sequence to focus on the most
informative part of the data. We apply subsampling at a
rate of 30 Hz, resulting in a total of 4 million clean poses.
This is similar to VPosers and Pose-NDFs training setup.
To create negative training samples along with their corre-
sponding ground truth distances to the manifold, we sample

noisy poses using Alg. 1, with P = N (0,⇡/4). Follow-
ing Pose-NDF [63], to speed up the NN search process, we
adopt a multi-step mechanism for querying the NN of each
noisy pose. For the first stage, we implement k0NN using
FAISS [37], get k0 candidates. For the second stage, we
use the quaternion geodesic distance to find exact k neigh-
bors from these k

0 candidates. In our implementation, we
set k0 = 1000 and k = 1. Note that we determine the final
distance by considering only the closest NN, deviating from
the approach in Pose-NDF [63], where the average distance
over the top 5 NNs is computed. This is motivated by the
observation that the top 5 NNs may exhibit discontinuities,
and averaging their distances tends to over-smooth the man-
ifold boundary.
Evaluation and validation. For validation, we utilize the
validation split of the AMASS dataset, specifically we use
Human Eva, MPI-HDM05, SFU, and MPI Mosh. For
testing the accuracy and convergence speed across various
baselines, we take the test split of AMASS dataset, specif-
ically, we use SSM-Synced and Transitions. The distance
values are computed in reference to the training data.

C.2. Network Training
Alg. 3 shows our training procedure. Specifically, we em-

ploy a hierarchical neural implicit network to implement
NRDF, following the approach outlined in [63]. The net-
work takes a quaternion representation of SMPL pose as
input and produces a scalar distance field as output. We
adopt a two-stage training strategy. For the first stage, each
training batch comprises a balanced combination of 50%
noisy poses and 50% clean poses. Subsequently, to enhance
generalization to downstream tasks, in the second stage, we
fine-tune our model using poses sampled from a standard
normal distribution N (0, I) 2 R

4K . We set the learning
rate to 1e-4. The entire training process requires 8-10 hours
with a single GeForce RTX 3090 GPU.

C.3. Baseline Details
In this section, we present implementation details of base-
lines. Our evaluation focuses on the pose denoising
task, where we compare finally converged poses with their
ground truth nearest neighbors. We sample 20k noisy poses
by using Alg. 1 based on AMASS [45] test set. We now
first investigate the significance of our Riemannian projec-
tion (Ours v/s Ours w/o RDFGrad) and sampling method
(Pose-NDF v/s Ours w/o RDFGrad). This is followed by
comparison with a closely related Riemannian Flow Match-
ing [21] based distance field (Ours v/s FM-Dis) and an ab-
lation on distance v/s gradient field modeling.
Ours v/s Ours w/o RDFGrad. In this study, we evalu-
ate the significance of our novel adaptive-step Riemannian
gradient descent algorithm, termed as RDFGrad. For Ours
w/o RDFGrad we use standard stochastic gradient descent
(SGD) in Euclidean space. The results presented in Tab. 1

V
Po
se
r

Po
se
-N
D
F

G
M
M

G
A
N
-S

G
FP
os
e-
Q

O
ur
s

G
FP
os
e-
A

FM
-D
is

Figure 6. Pose generation: We compare pose generation results of our method with VPoser [51], GMM, FM-Dis, Pose-NDF [63], GAN-
S [27], GFPose-A [25] and GFPose-Q. In comparison to VPoser, our method produces more diverse results. Furthermore, when compared
to GMM, FM-Dis, and Pose-NDF, our method generates more realistic poses.

Method Occ. Single Arm Only End Effectors Visible Occ. Legs
FID # APD (in cm) " dNN (in rad) # FID # APD (in cm) " dNN (in rad) # FID # APD (in cm) " dNN (in rad) #

VPoser-Random 1.145±.265 3.085±.642 0.066±.001 0.681±.091 8.330±.783 0.067±.000 0.748±.141 6.650±.951 0.058±.001

Pose-NDF [63] 1.460±.233 16.445±2.415 0.622±.001 2.081±..114 31.524±.872 0.738±.001 3.015±.162 24.831±1.328 0.677±.001

FM-Dis 1.150±.253 4.967±.798 0.210±.001 1.010±.103 10.812±1.451 0.347±.002 0.976±.158 6.886±1.664 0.226±.020

Ours 1.306±.259 5.892±.236 0.132±.000 0.964±.117 10.388±.820 0.137±.001 0.899±.170 6.705±.613 0.125±.001

Table 5. Quantitative results for IK Solver from partial/sparse joints. We run all evaluations 20 times, ± indicates the 95% confidence
interval. We evaluate under 3 settings: Occ. Single Arm, Only End Effectors (wrists and ankles) Visible, and Occ. Legs

illustrate that our approach achieves 6⇥ acceleration in con-
vergence speed thanks to the gradient update on the Rie-
mannian quaternion manifold. Please refer to the supple-
mentary video for qualitative comparisons. The conver-
gence criterion is based on the absolute difference between
the previously predicted distance and the current predicted
distance being less than 1e-5.
Ours w/o (RDFGrad, dq) v/s Pose-NDF. In this study we
evaluate the significance of our novel training data sam-
pling strategy. For this we compare Pose-NDF, which uses
a naive sampling strategy with Ours w/o (RDFGrad, dq),
which is basically Pose-NDF with our novel sampling strat-
egy. From Tab. 1, we observe that just changing the sam-
pling strategy, reduces the m2m distance from 25.04 cm to
15.16 cm, which shows the significance of the distance dis-
tribution of training data.
Ours v/s FM-Dis. In order to connect with the recent Rie-
mannian flow matching, we introduce a new baseline, called
FM-Dis, which extends RFM to model the pose prior as a
distance field. Instead of predicting the gradient, our varia-
tion FM-Dis predicts the distance between ✓t and the cor-
responding clean pose ✓1 without recomputing the near-
est neighbor. Specifically, we minimize LFM�Dis, given
by Eq. (29), where ✓t is sampled by using Eq. (26),

LFM�Dis(�) (28)

= Et⇠U(0,1),q(✓1),p(✓0)kv�(✓t)� d(✓t,✓1)k2g (29)

It is apparent that ✓t is evenly interpolated between the
noise and a particular clean sample, which stands in con-
trast to our distribution, where the number of samples grad-
ually decreases as one moves outward from the manifold.
As shown in Fig. 6, FM-Dis tends to generate poses close
to the mean. We show qualitative comparisons in our sup-
plementary video.
Distance v/s gradient prediction. To connect our model
with diffusion / score-based methods and flow matching-
based methods, we implement Gradient prediction w/o
time, FM-Grad w/ time and GFPose-Q. These approaches
explicitly predict either the gradient or the gradient direc-
tion, while our method derives the gradient of distance with
respect to the input pose through network back-propagation.
Predicting full gradients (including length) without time-
step conditioning is challenging for neural networks, lead-
ing to significant errors. Therefore, Gradient prediction
w/o time is designed to predict the gradient direction (with

normalized length) between the noisy pose and its nearest
neighbor only. Noisy poses are sampled using Alg. 1 in this
case. We additionally incorporate Riemannian flow match-
ing (RFM) [21] into our experiment, denoting as FM-Grad.
Different from RFM, we maximize the cosine similarity be-
tween the network prediction and gradient, thus, minimiz-
ing LFM�Grad, given by Eq. (30), where t ⇠ U(0, 1) as
above and ✓t is obtained in the same manner as FM-Dis.
We set T = 1000 during training.

LFM�Grad(�) (30)

= �Et,q(✓1),p(✓0)

����
v�(✓t, t) · Log✓t

(✓1)

kv�(✓t, t)k2gkLog✓t
(✓1)k2g

���� .

For test-time projection, we follow Eq. (3) using
v�(✓t, t) as the gradient. We set ⌧ = 0.01 and the initial
time-step T

0 = 200. For training Gradient prediction w/o
time and FM-Grad, we employ the same network architec-
ture as GFPose [25]. The convergence criterion is based on
the absolute difference between the predicted gradient norm
at t+1 and t being less than 1e-5. Regarding GFPose-Q, we
retrain it using the quaternion representation on the AMASS
dataset, with ; conditioning. Since gradient prediction is
less accurate than distance prediction, results based on gra-
dient prediction tend to exhibit either over-correction or un-
realistic poses. Please refer to the supplementary video for
qualitative comparisons.

C.4. IK Solver Setup
We utilize the AMASS test set and compute ground truth
marker or joint positions through forward kinematics. The
overall loss function, based on Eq. (12), encompasses a data
term defined by the L2 loss between predicted marker/joint
locations and observations. Given that most off-the-shelf
optimizers in PyTorch are SGD-based or its variations,
and there is no optimizer designed for quaternions in
geoopt [41], we introduce a custom optimizer specifically
designed for RDFGrad. This involves obtaining the Eu-
clidean gradient returned by the network and projecting it
onto the Riemannian quaternion manifold using Eq. 9. We
plan to release our code for public use and stimulating fu-
ture research. During optimization, for VPoser, VPoser-
Random and Pose-NDF, we set �✓ = 0.1, �� = 0.05 and
�↵ = 0.001. For FM-Dis and NRDF, we set �✓ = 5.0,
�� = 0.05 and �↵ = 0. Concerning our RDFGrad-based

H
an
ds

D
og
s

H
or
se
s

Figure 7. Animal and Hand pose generation: We generate diverse animal and hand poses using NRDF.

optimizer, for an effective initialization of the prior loss, we
exclude the data term in the first stage and optimize only
the prior term. Subsequently, we combine all loss terms
for joint optimization. The stopping criterion for all experi-
ments is set as MPJPE = 3 cm.

M
PJ

PE
(c

m
)

VPoser

Ours

Negative log-likelihood

Figure 8. Error Distribution vs. Pose Difficulty: X axis rep-
resents the relative negative log likelihood (NLL) while Y axis
represents the MPJPE between the result joint locations and cor-
responding observations.

C.5. Image-based Tasks Setup

For evaluating the impact of our prior on human pose es-
timation from images, we use 3DPW dataset [67]. We
conduct the evaluation on the test split of 3DPW, where
ground truth for a single person in the image is avail-
able. We crop the images using the GT 2d keypoints and
discard the images where SMPLerX doesn’t predict any
person. This amounts to roughly 5k images. We use
”SMPLer-X-S32” for predicting SMPLX parameters and
use optimization-based processing to convert SMPLX pa-
rameters to SMPL [51]. In particular, we want to refine net-
work prediction using optimization-based refinement. We
use SMPLer-X [18] for predicting human pose ✓̂ and shape
�̂ from images and then use optimization loss mentioned
in Eq. (12) and Eq. (14) to refine the predictions. For
VPoser, we optimize the latent vector z of VAE, where z

is initialized from the VAE encoding of predicted pose or ✓̂.
More specifically zinit = fVE(✓̂), where fVE is encoder of
VPoser. For Pose-NDF, FM-Dis, and Our prior optimiza-
tion, we simply optimize for ✓ and the variable is initialized
using ✓̂. We also optimize for SMPL shape (�) parameters
in both setups. For the evaluation metric, we have used PA-
MPJPE (Procrustes aligned-MPJPE), PA-PVE (Procrustes
aligned-per-vertex error).

V
Po

se
r-R

an
do

m

Example 1 Example 2 Example 3

Po
se

-N
D

F
FM

-D
is

O
ur

s

Figure 9. IK Solver for one arm and one leg occluded: Given partial observation, where one leg and one arm are occluded, we perform
3D pose completion. We observe that VPoser [51] based optimization generates realistic, yet very limited diversity in poses. Pose-NDF [63]
generates more diverse, but unrealistic poses. FM-Dis also generates limited diversity in poses. NRDF generates diverse and realistic poses
as compared to the aforementioned pose priors.

D. Additional Results

We now provide additional qualitative and quantitative re-
sults.

D.1. IK solver from partial surface markers or body
joints

We show more IK results from partial observations. For
surface markers, we observe that for Occ. Single Arm and
Visible end-effectors setup, our model generates more di-
verse poses based on APD. We also show qualitative re-
sults in Fig. 10. Note that despite the numerical diversity of
VPoser, it exhibits fewer diverse poses for occluded legs
compared to NRDF. As depicted in Fig. 11, the legs of
VPoser tend to move together without interaction between
them, which could also result in a large APD value. In
contrast, our method demonstrates more diverse leg poses,
including bending of knees. We provide results for an-
other setup in Fig. 9, where one arm and one leg are oc-
cluded. Given that body joints are more underconstrained
and challenging, we further evaluate our IK solver on par-
tial body joint observations. Tab. 5 and Fig. 12 illustrate the
IK results, showcasing that our method achieves accurate
IK while maintaining more diversity.

D.2. Monocular 3D Pose Estimation from Images
We provide more qualitative results for 3D pose estimation
from images in Fig. 13.

D.3. More Pose Generation Results
Fig. 6 shows additional generation results from different

methods. Note that poses generated by GMM can appear
unrealistic and can have implausible bends around joints
such as elbow or shoulder joints, as shown in Fig. 6 (top-
right). VPoser [51] tends to generate more standing and less
diverse poses. This is attributed to Gaussian assumption of
the latent space. FM-Dis also generates less diverse poses,
close to mean poses and some times results in unrealistic
poses as well. Pose-NDF [63] generates diverse poses, in
terms of bends around knees, elbows etc. but at the same
time, it results in implausible poses. This is attributed to
the inaccurate distance field of Pose-NDF. GAN-S [27] also
tends to generate less diverse pose, as compared to Pose-
NDF. We also compare with a diffusion-based model GF-
Pose [25]. We retrain GFPose on AMASS dataset and call
it GFPose-A. Since this is joint-location based model, we
observe that the generated results might have inconsistent
bone lengths, as highlighted in Fig. 6. We also retrain GF-
Pose on quaternions, denoting as GFPose-Q, which simi-
larly generates less diverse and unrealistic poses.

V
Po

se
r-R

an
do

m

Example 1 Example 2 Example 3

Po
se

-N
D

F
FM

-D
is

O
ur

s

Figure 10. IK Solver for visible end-effectors: Given partial observation, where only end-effectors are visible (yellow markers), we
perform 3D pose completion. We observe that VPoser [51] based optimization generates realistic, yet very limited diversity in poses or
almost similar poses. Pose-NDF [63] and FM-Dis result unrealistic poses for such sparse observations. NRDF generates diverse and
realistic poses as compared to the aforementioned pose priors.

We further show more results for hand and animal pose
generation in Fig. 7.

D.4. Error Distribution vs. Pose Difficulty
Poses generated by VPoser [51] exhibit a tendency to clus-
ter around mean poses, given it is based on Gaussian as-
sumptions. In this subsection, we explore the correlation
between location error and pose difficulty in partial Inverse
Kinematics (IK) tasks. The observed relationship is visu-
ally depicted in Fig. 8. It’s noteworthy that as the ground
truth pose becomes less common (indicated by larger Neg-
ative Log-Likelihood (NLL) values), the difference between
Mean Per Joint Position Error (MPJPE) of VPoser and
NRDF tends to increase. However, NRDF consistently
maintains a smaller error, remaining under 1.5 cm. The
first column of Fig. 9 (foot part of VPoser) also shows that
VPoser fails to meet the observations when the given pose
is uncommon.

V
Po

se
r-R

an
do

m

Example 1 Example 2 Example 3

Po
se

-N
D

F
FM

-D
is

O
ur

s

Figure 11. IK Solver for occluded legs: Given partial observation, where only one leg is occluded, we perform 3D pose completion. We
observe that VPoser [51] based optimization generates realistic, yet very limited diversity in poses or almost similar poses. Pose-NDF [63]
results unrealistic poses. FM-Dis generates almost similar poses and has no diversity. NRDF generates diverse and realistic poses as
compared to the aforementioned pose priors.

O
ur

s
Po

se
-N

D
F

V
Po

se
r-R

an
do

m

Occ. Single Arm Only End Effectors Visible Occ. Legs

Figure 12. IK Solver from partial/sparse joints: Given partial observation (black joints), we perform 3D pose completion. We observe
that VPoser [51] based optimization generates realistic, yet less diverse poses. Pose-NDF [63] generates more diverse, but sometimes
unrealistic poses, especially in case of very sparse observations. NRDF generates diverse and realistic poses in all setups.

SMPLer-X SMPLer-X SMPLer-X

SMPLer-X SMPLer-X SMPLer-X

+NRDF +NRDF +NRDF

+NRDF +NRDF +NRDF

Figure 13. 3D pose and shape estimation from images: (Top): We refine the results of SMPLer-X [18] network prediction using NRDF
based optimization pipeline.

