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Appendix
In the supplementary material, we provide:

§A Additional Implementation Details.

§B Computation Complexity on More Backbones.

§C Experiments on PoseTrack2018/21 Datasets.

§D Additional Ablation Study.

§E Qualitative Results.

A. Additional Implementation Details
Extracing Joint Embedding on HRNet. In the module of
Joint-centric Feature Decoder (JFD), the feature embedding
is extracted for each joint from the given global feature
maps Fi(t

′) with t′ ∈ [t−T, t+T ]. In our implementation
with HRNet backbones, specifically the HRNet-W48
variant, the high-resolution branch of the HRNet backbone
is succeeded by a 1×1 convolutional layer (CONV) and
a joint-wise fully connected feed-forward network (FFN)
that encompasses a fully connected layer. The CONV
layer consists of n kernels, where n represents the number
of pose joints, resulting in a dedicated feature map for
each joint. Subsequently, each individual feature map
corresponding to a specific joint is flattened and fed into the
shared FFN network, ultimately yielding its 32-bit feature
embedding.

Dataset. We evaluate our models on three widely-utilized
video-based benchmarks for human pose estimation: Pose-
Track2017 [16], PoseTrack2018 [1], and PoseTrack21 [7].
Specifically, PoseTrack2017 includes 250 video clips for
training and 50 videos for validation , with a total of
80, 144 pose annotations. PoseTrack2018 considerably
increases the number of clips, containing 593 videos for
training, 170 videos for validation, and a total of 153, 615
pose annotations. Both datasets identify 15 keypoints, with
an additional label for joint visibility. The training videos
are densely annotated in the center 30 frames, and vali-
dation videos are additionally labeled every four frames.
PoseTrack21 further enriches and refines PoseTrack2018
especially for annotations of small persons and persons in
crowds, including 177, 164 human pose annotations.

Optimization. We incorporate data augmentation in-
cluding random rotation [-45°, 45°], random scale [0.65,

Method #Params
GFLOPs GFLOPs

mAP
of Backbone of Net. Head

heatmap-based
PoseWarper [2] 39.1M 4.1 90.3 75.9
DCPose [22] 35.6M 4.1 21.7 77.1
regression-based
DSTA (Ours) 24.6M 4.1 0.01 78.6

Table 8. Computation complexity with ResNet-50 backbone.
#Params includes the parameters of entire network. All methods
utilize the same two auxiliary frames as in [22].

Method #Params
GFLOPs GFLOPs

mAP
of Backbone of Net. Head

heatmap-based
PoseWarper [2] 14.8M 0.35 73.5 67.7
DCPose [22] 11.3M 0.35 4.9 68.8
regression-based
DSTA (Ours) 2.4M 0.35 0.01 71.0

Table 9. Computation complexity with MobileNet-V2 backbone.
#Params includes the parameters of entire network. All methods
utilize the same two auxiliary frames as in [22].

1.35], truncation (half body), and flipping during training.
We adopt the AdamW optimizer [30] to train the entire
network for 40 epochs, with a base learning rate of 2e-4,
which is reduced by an order of magnitude at the 20th
and 30th epochs. β1 and β2 are set to 0.9 and 0.999,
respectively, and weight decay is set to 0.01.

B. Computation Complexity on More Back-
bones

Tables 8 and 9 present additional comparisons of com-
putation complexity between our regression-based method
and the heatmap-based methods. These experiments were
conducted on the PoseTrack2017 validation set using the
ResNet-50 and MobileNet-V2 backbones, respectively.
While implementing the heatmap-based PoseWarper [2]
and DCPose [22], we utilized their official open-source
codes. In their network heads, similar to SimpleBase [37],
we employed 3 deconvolution layers to generate high-
resolution heatmaps from the backbones.

As shown, our method outperforms heatmap-based
methods in both backbones, while utilizing significantly
lower computation complexity and fewer model parame-
ters. In addition, when compared to the HRNet backbone’s
results presented in Table 3 of the main paper, our method
achieves even greater savings in computational costs and



Method Bkbone Head Should. Elbow Wrist Hip Knee Ankle Mean
heatmap-based
AlphaPose [8] ResNet-50 63.9 78.7 77.4 71.0 73.7 73.0 69.7 71.9
MDPN [12] ResNet-152 75.4 81.2 79.0 74.1 72.4 73.0 69.9 75.0
Dyn.-GNN [42] HRNet-W48 80.6 84.5 80.6 74.4 75.0 76.7 71.8 77.9
PoseWarp. [2] HRNet-W48 79.9 86.3 82.4 77.5 79.8 78.8 73.2 79.7
PT-CPN++ [44] CPN [4] 82.4 88.8 86.2 79.4 72.0 80.6 76.2 80.9
DCPose [22] HRNet-W48 84.0 86.6 82.7 78.0 80.4 79.3 73.8 80.9
DetTrack [35] HRNet-W48 84.9 87.4 84.8 79.2 77.6 79.7 75.3 81.5
FAMIPose [23] HRNet-W48 85.5 87.7 84.2 79.2 81.4 81.1 74.9 82.2
regression-based
DSTA (Ours) ResNet-152 85.2 87.1 80.5 74.4 79.6 78.0 69.7 79.6
DSTA (Ours) HRNet-W48 86.2 88.6 84.2 78.5 82.0 79.2 73.7 82.1
DSTA (Ours) ViT-H 85.9 88.8 85.0 81.1 81.5 83.0 77.4 83.4

Table 10. Comparison with the SOTA on PoseTrack2018 val.
set. Similar to FAMI-Pose [23], our proposed DSTA sets the tem-
poral span T to 2, consisting of two preceding and two subsequent
frames, totalling four auxiliary frames.

model parameters on these smaller backbone networks. For
instance, when utilizing the MobileNet-V2 backbone, our
regression-based network incorporates a mere 2.4 million
parameters, whereas the heatmap-based networks demand
a significantly higher number, specifically 14.8 million and
11.3 million parameters. On the other hand, when employ-
ing the ResNet-50 backbone, the FLOPs of our regression-
based head are almost negligible, accounting for just 1/9030
or 1/2170 of those required by the heatmap-based heads.
The superior computational and storage efficiency of our
proposed regression framework holds immense value in the
industry, especially for edge devices and real-time video ap-
plications.

C. Experiments on PoseTrack2018/21 Datasets
Tables 10 and 11 present the comparisons of our method
with the state-of-the-art methods on the PoseTrack2018
and PoseTrack21 valdation sets, respectively. These re-
sults further demonstrate that our proposed regression-
based method achieves performance that is either superior
to, or at the very least, on par with the state-of-the-art
heatmap-based methods.

D. Additional Ablation Study
Size of Joint Tokens. In this additional study, we conduct
experiemnts to examine the influence of the adopted size of
the joints’ feature embedding (i.e., joint token). Table 12
presents the performance variations resulting from different
joint token sizes on the PoseTrack2017 validation set. As
the size of the joint tokens increases, a gradual improve-
ment in performance can be observed. However, beyond
a size of 16, the performance tends to plateau, suggesting
that further increases in token size do not yield commensu-
rate improvements. This indicates that each pose joint re-
quires a sufficiently large feature token to store its relevant

Method Bkbone Head Should. Elbow Wrist Hip Knee Ankle Mean
heatmap-based
SimBase. [37] ResNet-152 80.5 81.2 73.2 64.8 73.9 72.7 67.7 73.9
HRNet [28] HRNet-W48 81.5 83.2 81.1 75.4 79.2 77.8 71.9 78.8
PoseWarp. [2] HRNet-W48 82.3 84.0 82.2 75.5 80.7 78.7 71.6 79.5
DCPose [22] HRNet-W48 83.7 84.4 82.6 78.7 80.1 79.8 74.4 80.7
FAMIPose [23] HRNet-W48 83.3 85.4 82.9 78.6 81.3 80.5 75.3 81.2
regression-based
DSTA (Ours) ResNet-152 86.1 85.5 80.0 74.6 80.5 76.9 70.2 79.6
DSTA (Ours) HRNet-W48 87.5 86.6 83.3 78.7 82.7 78.3 73.9 82.0
DSTA (Ours) ViT-H 87.5 87.0 84.2 81.4 82.3 82.5 77.7 83.5

Table 11. Comparison with the SOTA on PoseTrack21 val. set.
Similar to FAMI-Pose [23], our proposed DSTA sets the tempo-
ral span T to 2, consisting of two preceding and two subsequent
frames, totalling four auxiliary frames.

#Token Size 8 16 32 64
mAP 76.1 78.0 78.6 78.6

Table 12. Different sizes of joint tokens. In the experimental
setup, we utilized the ResNet-50 backbone along with two auxil-
iary frames.

Figure 4. Additional qualitative results of our DSTA on the
PoseTrack datasets.

feature information, but a too large feature token will only
cause spatial redundancy. Therefore, in our experiments,
we have opted to use a token size of 32, striking a balance
between capturing sufficient feature information and avoid-
ing unnecessary spatial redundancy.

E. Qualitative Results
Additional qualitative results on PoseTrack datasets are
shown in Fig. 4. Additional results can be found in the ac-
companying video material.
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