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A. Technical Details
A.1. Datasets

KITTI-360 [4]: Sequences are selected and cropped by
considering vehicle speed variations to remove time-space
compensation issues as described in main article Sec. 4.3.
Once sequences are cropped, one out of two frames are kept
for all sensors to obtain a total of 40 frames per sequence.
This decision was made to match the same length as the
NVS benchmark sequences present on the dataset. The de-
tails from each sequence are summarized in Tab. 1.

Sequence KITTI-360 run Starting frame Ending frame

1 0009 980 1058
2 0009 2854 2932
3 0010 3390 3468
4 0002 4722 4800

Straight line 0009 220 298

Table 1. Selected frames for each KITTI-360 [4] sequence.

nuScenes [2]: Since nuScnes poses are provided only in
SE(2), they cannot be used directly for our method. In-
stead, we use KISS-ICP [8] to get a good estimate of the
LiDAR poses. Extrinsic calibration provided by the dataset
is then used to obtain the poses for all cameras. We se-
lect the sequences 916, 410 and 417 for our experiments, as
they are more suitable for the calibration (closer structures,
more speed variation). All LiDAR scans are used during
calibration as the LiDAR is sparser than the one in KITTI-
360, while one out of two images is subsampled to reduce
training time.

Pandaset [10]: Since extrinsic parameters are not pro-
vided by the dataset, they are estimated using the global
poses of all sensors at several frames by calculating the

transformation between the frames with the same times-
tamp from each sensor. Sequences 33, 40 and 53 are used
for our experiments as they have more close structures. We
apply the same subsampling strategy as for nuScenes.

A.2. Architecture and Losses

For our NeRF network architecture, we use the same model
as MOISST [3] which is inspired by the nerfacto model
of Nerfstudio1 open source project. It uses the combina-
tion of two papers. The first one is the proposal network
from MipNeRF-360 [1] with two proposal networks for the
coarse density estimation and a final NeRF for the radiance
and the fine density, improving the geometry of the scene,
the rendering quality and reducing the training time. The
second one is the hash grid introduced by instant-NGP [5]
to replace the deterministic positional encoding, which also
accelerates the training. Following the nerfacto implemen-
tation, 128 points (instead of 256) per ray are sampled for
the first proposal model, 96 points for the second one, and
48 points for the final NeRF model, which outputs our re-
sults.

On top of LC , LCam and LD, two losses for geometric
consistency, also used by MOISST, are added: a structural
dissimilarity (DSSIM) loss LSSIM [9], and a depth smooth-
ness loss LDS from RegNeRF [6].

A.3. Hyperparameters

In Tab. 3 are indicated the hyperparameters used for the
training of SOAC, and in Tab. ?? are the NeRF delay-
ing epochs depending on the dataset. Delaying the NeRF
proves advantageous in scenarios characterized by a mul-
titude of sensors, some of which exhibit minimal overlap
with the reference sensor throughout the sequence. This
approach facilitates the accurate propagation of calibration

1https://docs.nerf.studio/en/latest/nerfology/methods/nerfacto.html
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Figure 1. Ablation results on KITTI-360 [4] sequence 4: for SOAC, SOAC w/o Sigmoid and SOAC w/o visibility grid as box plots with
log scale, the red lines show the initial error (Best viewed in color).

Hyperparameter Value

Number of epochs 20
Initial calibration lr 1e-3
Final calibration lr 1e-4
Visibility grid size 20
Batch size 100
Patch size [15, 15]
LC coef 1
LCam coef 1
LSSIM coef 0.1
LD coef 1
LDS coef 1e-4
Translation bounding 2 meters
Temporal bounding 500 ms

Table 2. SOAC hyperparameters used for the training.

Sensor KITTI-360 [4] nuScenes [2] Pandaset [10]

Diagonal cams - 1 3
Side cams 1 9 -
LiDAR 6 5 8

Table 3. SOAC hyperparameters used for the training.

information during training from sensors presenting signifi-
cant overlap with the reference sensor to those with lesser or
no overlap at all. Basically, larger overlaps and larger quan-
tities of data reduce the number of necessary delay epochs.
The number of epochs for training MOISST is reduced to
20, as improvement was not observed with more. The spa-
tial and temporal optimization learning rate is fine-tuned to
5e-4.

B. Additional ablations

Correction bounding. The addition of the sigmoid for
bounding the translation and temporal corrections allows
better stability and robustness as shown in Fig. 1 on which a
huge decrease in calibration accuracy can be noticed when
removing the sigmoid.

Dataset MOISST [3] SOAC

KITTI-360 [4] ∼ 2 h 30 min ∼ 1 h 30 min
Nuscenes [2] (3 cams) ∼ 2 h 30 min ∼ 1 h
Nuscenes [2] (5 cams) ∼ 4 h 30 min ∼ 2 h 30 min
Pandaset [10] ∼ 1 h 30 min ∼ 1 h 20 min

Table 4. Training time comparison on different sequences.

Downscale Calibration error(°/cm/ms) Training time (min)
factor SOAC MOISST [3] SOAC MOISST [3]

1 0.2/4.6/3.9 0.1/5.3/1.3 605 163
2 0.3/4.6/2.5 0.3/24.1/5.3 181 42
4 0.2/4.6/1.7 1.1/41.4/13.1 85 17
8 0.4/12.3/8.2 2.6/56.6/28.6 53 12

Table 5. Training time and calibration accuracy for varying down-
scale factor on KITTI-360 [4] sequence 1 seed 0

Visibility grid. Removing the visibility grids deteriorates
the performance of the LiDAR calibration rotation and
translation as shown in Fig. 1.

C. Training time
We report the mean training times with both SOAC and
MOISST for the sequences from each tested dataset in
Tab. 4. For all the experiments, we used a GPU of similar
performance to an RTX 3090. The shown results are with
the downscaled images as described in the paper. SOAC is
able to provide better calibration than MOISST with shorter
training time, even if multiple NeRFs are used, as it can
use much smaller images. To measure the impact of the
image downscale factor in relation to each method’s train-
ing time, we train both methods at different downscale fac-
tors and report results on Tab. 5. As it can be observed,
MOISST accuracy is considerably harmed by using lower-
resolution images in comparison to SOAC. Furthermore,
SOAC achieves high accuracy even with large downscale
factors on the images (i.e. downscaling the image resolu-
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Figure 2. Results for KITTI-360 [4] per sequence for SOAC and MOISST [3] as box plots with log scale. The red lines show the initial
error (best viewed in color).

Sequence 33 Sequence 40 Sequence 53
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Figure 3. Results for Pandaset [7] per sequence for SOAC and MOISST [3] as box plots with log scale. The red lines show the initial error
(best viewed in color).



Sequence 916 Sequence 410 Sequence 417
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Figure 4. Results for nuScenes [2] per sequence for SOAC and MOISST [3] as box plots with log scale. The red lines show the initial error
(best viewed in color).

tion by 4 shows no drop in accuracy for SOAC while being 8
times faster. In comparison, MOISST presents a severe drop
in performance when downscaling). This enables SOAC to
achieve more efficient training times given its ability to ex-
ploit lower-resolution images.

D. Quantitative results
Specific box plot results are provided for each sequence.
The results for KITTI-360 are in Fig. 2, the results for
Nuscenes in Fig. 4, and the results for Pandaset in Fig. 3.

On KITTI-360, MOISST seems to provide results on par
with SOAC on the Front-right camera and the LiDAR. How-
ever, on the side cameras, there is a significant difference in
the stability of the calibration. On Nuscenes and Pandaset,
SOAC is much more precise and stable than MOISST all
across the board.

E. Qualitative results
In Fig. 6 and Fig. 5 are shown LiDAR/Camera projection
on nuScenes and Pandaset sequences. The calibration op-

timized by SOAC provides substantially better alignment
than the one from MOISST.

Fig. 7 shows the predicted images and masks from each
NeRF trained with different cameras. The visibility masks
are coherent with the predicted RGB images, allowing cor-
rect filtering for SOAC.
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Figure 5. Qualitative LiDAR/Camera reprojection results on Pandaset [10] dataset.
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Figure 6. More qualitative LiDAR/Camera reprojection results on nuScenes [2] dataset.
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Figure 7. Results using visibility grids on a Pandaset [10] sequence – Prediction from different NeRFs.
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