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1. Metrics

We claimed reporting mIoU only does not reflect perfor-
mance appropriately. The relationship between mIoU, FB-
IoU and foreground ratio is derived in the following.

mIoU Mean intersection over union (mIoU) is calculated
by
1. Accumulation of intersection areas, union areas over

query predictions q Eq. 1
2. Calculating IoU for each semantic class,Eq. 2
3. Averaging the class-wise IoUs, Eq. 3

Ic =
∑
q

TPq,c

Uc =
∑
q

TPq,c + FPq,c + FNq,c,
(1)

IoUc =
Ic
Uc

(2)

mIoU =
1

C

C∑
c=1

IoUc (3)

with true positives TP counting pixels where both predic-
tion and ground truth label equal c, FP being the number of
pixels where c was falsely predicted and FN the amount of
ground truth c-labels which were predicted as another class.

Note that the number C of categories in the dataset does
not include the background class.

FB-IoU In 1-way segmentation, which we and all previous
CD-FSS focus on, the task is binary segmentation: For each
episode, a class c is selected, query and support containing
c are sampled, c is treated as f oreground and everything
̸= c is treated as complementary background. Foreground
background intersection over union is calculated through
1. Accumulating the areas of intersection and union with

respect to both c and ̸= c - Eqs. (1) and (4)
2. Treating all classes equal by aggregating their metrics to

fore-and background - Eq. 5
3. Averaging IoU for foreground and background - Eqs. (6)

and (7)
We can obtain the background class metrics in the style

of Eq. 1 through

I ̸=c =
∑
q

TNq,c

U̸=c =
∑
q

TNq,c + FNq,c + FPq,c,
(4)

where TNq,c indicates that both prediction and ground truth
did not predict c. The foreground and background intersec-
tions and unions are then obtained through

If =
∑
c

Ic, Ib =
∑
c

I ̸=c

Uf =
∑
c

Uc, Ub =
∑
c

U̸=c

(5)

IoUf =
If
Uf

, IoUb =
Ib
Ub

(6)

FB-IoU =
1

2
(IoUf + IoUb) (7)

To efficiently handle mIoU and FB-IoU in implementa-
tion, we and previous work represent I and U in a 2 × C-
matrix each, in which the first row stores the I ̸=c vector
and the second row the Ic vector for the intersection matrix,
likewise with U for the union matrix.

Problem of mIoU In the main paper, we showed an exam-
ple where a naive predictor can outperform previous work
by simply predicting always foreground. We inspect the ex-
pected performances of random prediction behaviour. Its
chance to predict a true positive in Eq. 1 is rŷ · ry, where
the both terms denote the foreground ratio of the prediction
and ground-truth, respectively. The probabilities for false
positives and negatives are p(FP ) = rŷ · (1 − ry) and
p(FN) = (1 − rŷ) · ry, such that equation 2 will evaluate
to:

IoUc =
rŷry

rŷry + ry(1− rŷ) + (1− ry)rŷ
(8)

for all c, letting us obtain also IoUf in Eq. 6. The back-
ground IoUb can be equally obtained by substituting all r
with 1− r in Eq. 8. From these, we can obtain both mIoU
and FB-IoU through equations Eq. 3 and Eq. 7 respectively.

Fig. 1 visualizes the expected values for both metrics as
a function of the foreground ratios. The fact that a higher
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Figure 1. Results of a random mask predictor in 1-way FSS as a
function of Bernoulli-sampled predicted foreground probability rŷ
and dataset ground truth foreground ratio ry (left) and its gradients
with respect to the chosen predicted foreground ratio (right). For
mIoU, the gradient is always positive, meaning one can get an
increase in mIoU by increasing foreground prediction ratio, while
for FB-IoU such overprediction is punished.

predicted foreground ratio leads to higher mIoU is reflected
by its non-negative derivative w.r.t. rŷ:

∂(mIoU)

∂rŷ
=

r2y

(ryrŷ − ry − rŷ)
2 (9)

In contrast, the derivative of the FB-IoU

∂(FB-IoU)

∂rŷ
=

r2y
(rŷ + ry − rŷry)2

− (ry − 1)2

(1− rŷry)2
(10)

can be negative and is zero at ry = rŷ = 1
2 . Compare Fig. 1.

Discussion We showed that mIoU performance can be
boosted by increasing the foreground prediction ratio in 1-
way FSS by the example of a random predictor. In reality, the
prediction has some confidence and suppressing almost-sure
background naturally decreases the union area in the denom-
inator and hence increases mIoU. Exploiting the remaining
uncertainty in a foreground-biased manner still boosts mIoU,
which contrasts the intuition that the maximum performance
should be reached when predicted and ground truth fore-
ground areas match. In standard semantic segmentation, this
is less an issue, since the categories in the dataset C typi-
cally equals the number of possible labels to be assigned.
However, in 1-way FSS, and in particular CD-FSS, where
the uncertainty is still high, the phenomena we highlighted

warrants careful consideration. Note that the problem cannot
be fixed by including the background as a semantic class for
mIoU calculation, since it will still have minor contribution
for large C. Moreover, simply adding the background class
is not semantically meaningful because the background is
not a consistent class across episodes. In 1-way episodes,
there is one class selected as the foreground class, and others
are treated as background. As a consequence, background
objects in one episode can be foreground objects in another.
As an alternative, we showed FB-IoU is a metric to reveal
overprediction behaviour.

mIoU has been preferred over FB-IoU in previous work
because it is considered to give better judgment about the
generalizability of the model [8]. This can be understood
in the sense that mIoU punishes bad predictions on single
classes and underrepresented classes in comparison with
FB-IoU. We agree, hence the mIoU measure should not
be replaced, but complemented with the foreground ratio
sensitive FB-IoU.

2. Deepglobe Issue
In the paper we argued the benchmark’s[7] Deepglobe [3]
dataset is not appropriate due to annotation issues. Deep-
globe is an established and widely used dataset - the problem
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Agricultural Land

Query

Figure 2. Cause of the Deepglobe Issue. The image from the Agri-
cultural Land episode we inspected in the main paper is a crop (red
cell) from the here shown larger original[3] image (2448× 2448).
Cropping is done following the CD-FSS benchmark[7]. While in
the scale of the original image the inaccuracies are minor, at the
zoom level of the cells it becomes intolerable. We suggest the
benchmark should be adjusted accordingly. Note that also the upper
left region in the query is actually Forest, not Rangeland.



only emerges because of heavy cropping applied in the pre-
processing for the benchmark. Its creators claim that crop-
ping has little effect because objects in sattelite images have
no regular shape, but from Fig. 2 it becomes evident that the

actual problem is that, at a higher zoom level, small spatial
inaccuracies have large impact, such that almost half of the
shown image is annotated wrongly. Another example with
with the same issue can be viewed in the first row of Fig. 6.

Table 1. Table from main paper in full. Intra- (FG↔FG) and inter- (FG↔BG) class similarities in the embedding space of (L)ow, (M)iddle
and (H)igh-level feature maps. Measure represents averaged cosine similarities of pixel pairs from same and opposite classes, respectively. A
higher delta represents higher discriminability. The intra-image statistic measures similarity within the support, across its pixel pairs which
match the (FG↔FG)/(FG↔BG) criterion. The inter-image statistic measures similarity between query and support, across query-support
pixel pairs. In case of overfitting, the intra-support discriminability would rise without bringing improvement for the inter query-support
measure. The latter we argue has direct positive impact on our query-support cross-attention module, as well as the hypercorrelations in
[7, 8] and dense affinity matrices in [2].

Deepglobe ISIC Chest FSS SUIM
Metric L M H L M H L M H L M H L M H
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Intra-Support

FG↔FG ✓ 0.65 0.52 0.64 0.73 0.62 0.73 0.68 0.57 0.68 0.56 0.46 0.64 0.60 0.54 0.69
FG↔BG × 0.63 0.47 0.58 0.70 0.57 0.63 0.63 0.48 0.59 0.51 0.39 0.56 0.56 0.45 0.60
delta∆ 0.02 0.05 0.06 0.03 0.05 0.10 0.04 0.09 0.10 0.05 0.07 0.07 0.05 0.09 0.09

Inter-Query-Support

FG↔FG ✓ 0.63 0.49 0.59 0.69 0.56 0.63 0.67 0.55 0.67 0.53 0.41 0.60 0.51 0.42 0.58
FG↔BG × 0.62 0.46 0.57 0.68 0.55 0.63 0.63 0.48 0.59 0.50 0.39 0.56 0.50 0.41 0.57
delta∆ 0.01 0.03 0.02 0.01 0.01 0.01 0.04 0.07 0.08 0.03 0.03 0.04 0.01 0.02 0.01

A
ft

er
Ta

sk
-A

da
pt

io
n

Intra-Support

FG↔FG ✓ 0.12 0.26 0.34 0.19 0.40 0.53 0.20 0.36 0.39 0.29 0.42 0.47 0.32 0.45 0.50
FG↔BG × -0.04 -0.11 -0.14 -0.06 -0.13 -0.16 -0.08 -0.14 -0.15 -0.11 -0.16 -0.16 -0.10 -0.14 -0.14
delta∆ 0.17 0.37 0.48 0.25 0.53 0.69 0.28 0.50 0.54 0.41 0.58 0.63 0.42 0.59 0.65

Inter-Query-Support

FG↔FG ✓ 0.03 0.05 0.05 0.06 0.13 0.19 0.17 0.31 0.33 0.18 0.28 0.33 0.14 0.20 0.16
FG↔BG × -0.01 -0.02 -0.01 -0.02 -0.04 -0.06 -0.06 -0.13 -0.12 -0.06 -0.10 -0.11 -0.04 -0.04 -0.03
delta∆ 0.05 0.07 0.06 0.07 0.18 0.25 0.23 0.44 0.45 0.25 0.38 0.44 0.18 0.24 0.18

Deepglobe ISIC Chest X-ray FSS-1000 SUIM
L          M         H L         M         H L         M         H L         M         H L         M         H

Deepglobe ISIC Chest X-ray FSS-1000 SUIM
L          M         H L         M         H L         M         H L         M         H L         M         H

Figure 3. Visualization of Tab. 1. Left: Before Task Adaption, right: After TA. Checkmarks represent average same-class similarity, crosses
average opposite-class similarity. The most important measure for the success of the query segmentation is our discriminability measure
delta in cyan, representing the distance between check- and crossmarks. An overfitting to the support set could be interpreted as the vertical
distance between blue and cyan in the right diagram. High level features tend to be more susceptible to this (see cyan drop on Deepglobe
and SUIM), but still provide important semantic information (highest on ISIC and FSS). In the main paper we noted good performance
on ChestXray without TA, which is supported by seeing it to have the highest inter-query-support delta in the left diagram. Note also the
position of 0 on the y-axis in both charts, indicating on the left the cyan delta is almost zero for Deepglobe, ISIC and SUIM, whereas on the
right TA could pushed opposite-class similarity below zero.



3. Task Adaption and Embedding Space
Tab. 1 reports our measures in the feature spaces after back-
bone and attached network respectively. We consider this
to be useful for researchers to understand the challenges in
CD-FSS and our contribution to solve them.

Pixel-to-pixel similarities are measured because they are
the basis for dense comparison. We use ResNet-50 and ex-
tract the 13-layer feature pyramid following [8, 10]. Mea-
surement is performed independently for each layer, their
index l is dropped. Masks are first downsized by bilinear
interpolation to match the feature volume size. Intra-support
similarities are obtained with the masked feature volumes

F s
f = {F s|Ms > 0.5}

F s
b = F s \ F s

f .
(11)

Then,

sims↔s
F↔F =

1

|F s
f |

2 ∑
fi∈F s

f

∑
fj∈F s

f

c(fi, fj) (12)

sims↔s
F↔B =

1

|F s
f ||F s

b |
∑

fi∈F s
f

∑
fj∈F s

b

c(fi, fj), (13)

with cosine similarity c(·). Equally for inter-query-support
similarities, we mask the query features

F q
f = {F q|Mq > 0.5}, (14)

F q
b = F q \ F q

f . (15)

Then,

simq↔s
F↔F =

1

|F q
f ||F s

f |
∑

fi∈F q
f

∑
fj∈F s

f

c(fi, fj) (16)

simq↔s
F↔B =

1

|F q
f ||F s

b |
∑

fi∈F q
f

∑
fj∈F s

b

c(fi, fj). (17)

Finally, the delta between the intra- and inter-class distances
can be interpreted as the discriminability within support

deltas↔s = sims↔s
F↔F − sims↔s

F↔B (18)

and across (inter) query and support:

deltaq↔s = simq↔s
F↔F − simq↔s

F↔B (19)

The block-wise L/M/H measure is obtained by averaging
the measure of layers belonging to a block, as in [8, 10] the
L/M/H split for our 13 layers is (4/6/3).

From Tab. 1 dataset-specific characteristics become ap-
parent. Fig. 3 provides an intuitive understanding of the
relationship between the measures.

4. On Affinity and Correlation Maps
Fig. 5 visualizes the correlation maps that are the result of
the dense comparison from Sec. 3.3 of the main paper. Here
we attempt to provide more intuition on their construction,
subsequent thresholding and refinement.
Construction of q̂predl

is similar to [10], but since it is the
core comparison mechanism of our approach, we attempt to
break it down to make it more understandable why it works.
A correlation map is calculated from query features, support
features and support mask. The steps are 1) query-support
pixel-to-pixel dot product, 2) softmax over the support di-
mension 3) filtering support foreground class.

q̂predl
= softmax(

1)︷ ︸︸ ︷
fl(F̂ q

l )fl(F̂
s
l )

T /
√
d)︸ ︷︷ ︸

2)

fl(Ms
l )︸ ︷︷ ︸

3)

. (20)

1) Query features F̂ q
l and support features F̂ s

l are mul-
tiplied. By flattening fl, feature volumes are converted
into matrices with spatial dimensions represented in the
first axis and channel dimensions in the second. This re-
sults in a matrix multiplication between HW × C and
C × HW , yielding a dense pixel-to-pixel affinity map of
shape HW×HW . Each element of this map is a dot product
of two C-dimensional feature vectors, indicating the similar-
ity between individual query and support pixels. Division by
square root of channel dimension d is only scaling.

2) For any given query pixel (specific row), taking the
softmax over its similarities to all support pixels (columns)
accentuates support pixels with high similarity, pushing their
values towards 1.

3) Multiplying a HW -shaped row of the affinity map
with the HW -shaped support mask vector filters out sup-
port background regions and aggregates the remaining fore-
ground similarities. As a result, q̂pred will highlight query
pixels with large similarity to the support foreground.

Thresholding. Estimating the correct foreground ratio
has been shown [1] to be a primary driver for perfor-
mance in FSS. We use function thresh to obtain binary
M̂q from q̂fused. A simple idea would be to classify ev-
ery pixel with a score larger than its expected value as
foreground. For random features, the expected value of
q̂pred and thus also q̂fused equals mean(Ms), i.e. the fore-
ground ratio in the support set, because we obtained q̂pred
by softmax(· · · )Ms in Eq. 20. Fig. 4 shows that the corre-
lation scores (x-axis) are distributed around this mean(Ms),
but we can also observe that choosing it as a threshold would
lead to overprediction. From the shown samples it becomes
apparent why a) separating the foreground cluster through
k-means/Otsu’s[9] is an efficient strategy, b) we choose
thresh(m̂) = max(mean(m̂), otsus(m̂)) as the threshold.



We believe the understanding of the distributions is relevant
for the future development of models that want to further
process correlation maps.

a)

b)

c)

Figure 4. Histograms of correlation/prediction maps q̂fused. Cases
a) and b) represent success cases where the foreground objects
(right cluster in the histogram) are easily segmentable by otsus
(green vertical). Case c) also seems to feature two clearly distinct
Gaussians, but the threshold would fall below the average prediction
score across pixels (blue vertical). The right cluster is too similar
to the average score, which indicates the cluster rather represents
an “unknown” class which can be distinguished from the support
background cluster (left) but is not very similar to the support
foreground object. Indeed, we can see that 1) the backgrounds in Q
and S are similar (sea), 2) the object highlighted in our q̂fused is
not similar to either support foreground (turtle) or background, 3)
the actual query ground truth object (tiny hidden fish in Q,Mq) is
visually disparate from the support turtle and hidden in unknown
background, making it too difficult to segment. In this case, the
average q̂fused (blue) serves as the threshold.

Refinement. As a postprocessing step, the prediction mask
M̂q is refined through applying [4, 6]. Not for all domains
this is beneficial, and in the main paper we mentioned it
can be verified by forwarding a pseudoepisode constructed
from the support set. We provide Algorithm 1 for a detailed
description of the process. For the Chest X-ray dataset for
example, it is mostly not beneficial, such that the refinement
is mostly not applied. This also reflects in Chest X-ray’s
slightly inverse relationship between performances Ours(no-
pp) and Ours in Tab. 4 of the main paper.

Algorithm 1 Dynamic Refinement Decision.

Require: Query image Iq , Support set Is, Ms ▷ Test Task
Require: Orig. Support Features F̂ s

Require: Augm. Support Features F̂ s̃1 ▷ backprojected
Require: Prediction q̂fused ▷ Result of main paper Eq. 7

Q← F̂ s ▷ pseudoquery
K ← F̂ s̃1 ▷ pseudosupport
V ←Ms

ŝfused ← forward(Q,K, V ) ▷ main paper Eq. 6-7
τ ← thresh(ŝfused)

M̂s ← ŝfused > τ

M̂s,ref ← crf(Is, ŝfused, τ)

if iou(M̂s,ref ,Ms) > iou(M̂s,Ms) then
M̂q ← crf(Iq, q̂fused, thresh(q̂fused)) ▷ apply

else
M̂q ← q̂fused > thresh(q̂fused) ▷ not apply

end if

Function iou(M̂,M) calculates Eq. 2 given prediction
M̂ and ground truth M . Function crf(I, m̂, τ) calculates [4]
with unaries from softmax generated as sigmoid(T (m̂−τ)),
temperature T=1 for simplicity, input RGB image I , our soft
prediction m̂ and the calculated threshold τ .

5. Further architectural validation
We test our method under modified configurations. Tab. 2
reports the performance gap under these changes. To over-
come the limitations of 1x1 convolutions that do not learn
relations to the spatial neighborhood, an intuitive idea would
be to use a kernel size larger than 1. However, this quadrati-
cally increases the number of learnable parameters from the
sparse data and thus performs worse than the 1x1 convolu-
tions. We also find that geometric transformation, in our case
the random shearing, is more suitable for establishing the
dense consistency than operations like color jitter or blur.

6. Qualitative Comparison
Fig. 6 provides a qualitative comparison of our results. The
samples are the same as in Fig. 5, such that intermediate
level and final results can be compared.



Configuration Change Metric Deepglobe ISIC Chest-Xray FSS-1000 Avg.

a) kernelsize 1→3
mIoU -8.27 -7.90 2.61 -1.60 -3.79

FB-IoU -5.57 -14.62 2.01 -2.25 -5.11

b) out channels 64→32
mIoU -0.01 -5.28 -0.09 -1.60 -1.75

FB-IoU -0.20 -5.41 -0.20 -1.37 -1.80

c) out channels 64→128
mIoU -0.19 -6.25 -0.69 0.16 -1.74

FB-IoU -0.11 -5.74 -0.39 0.26 -1.50

d) n epochs 25→10 mIoU 0.21 -6.91 -2.69 -0.48 -2.47
FB-IoU 0.12 -6.36 -1.82 -0.10 -2.04

e) Jitter 0→0.3
Shear 20→0

mIoU -3.67 -3.06 0.05 -2.08 -2.19
FB-IoU -3.28 -2.76 0.08 -1.35 -1.83

Table 2. Performance differences under modified configurations of our attached layers. a) Replacing 1x1 convolutions through 3x3, b)
Decreasing or c) increasing the number of target channels for task-adapted features, d) Fitting for less epochs, e) Replacing the augmentation
method, color jitter instead of affine shearing.
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Figure 5. Layer-wise correlation maps q̂predl , their aggregation q̂fused and binarization M̂q . For each dataset, the upper row represents our
maps, whereas the lower row represents the results one would obtain for ResNet features, i.e. when calculating dense comparison on the
feature pyramid before our attached Task Adaption layers. Besides the improvement introduced through TA, we can observe how considering
all levels is important for CD-FSS where the target domain is unknown: Low-level features are meaningful for Deepglobe and ISIC datasets,
whereas High level features are more suitable for FSS and SUIM. Consistent with prior findings in FSS, mid-level layers demonstrate their
utility across various datasets. Compare Fig. 6 for the sampled input images.



Q_unrefined

D
ee

pg
lo
be

FS
S-
10

00
SU

IM

Q_pred_resnet

IS
IC

Lu
ng

Q_pred_resnet

Q_pred_resnet

Q_pred_resnet

water

nevus

lung

accordion

robot

Figure 6. Qualitative comparison of results from proposed method (M̂q), its unrefined variant (no-pp), ResNet feature comparison without
adaption (w/o TA) and previous CD-FSS benchmark SOTA[7] (PATNet). We show a 1-shot episode with one Support image for each dataset.

7. Detailed Adaption and Inference Procedure

In Sec. 4.3 of the main paper two operational modes were
discussed. On the one hand, the standard evaluation in FSS,
where each test task is processed independently, without any
knowledge of a previous task. Consequently, parameters θ
of attached layers g are estimated from scratch for every
task, corresponding to Algorithm 2. On the other hand, in
the quick-infer mode, parameters θ are kept constant for a
task featuring a previously processed semantic class, corre-
sponding to Algorithm 3. The latter mode is useful for com-
putational efficiency in most real-word applications where
the same category should be segmented in multiple images.
For example, in the Chest-Xray dataset there is only one
class, then one can run Algorithm 2 once and predict all
further images only with Algorithm 3. If there are tasks with

different classes, then for each class parameters θ are fitted
once and stored for further episodes of the same class. Ta-
ble 3 documents runtimes per operation. In the quick-infer
mode, the remaining load is primarily merely the backbone,
the prediction can run at 27|18 fps for (1|5)-shot as against
15|3 fps of baseline[5], shown in Table 4. [5] is similar in
architecture to PATNet[7] and HSNet[8], but requires no
test-time fine-tuning(TFI[7]) stage. Tesla P100 was chosen
for convenience, though alternative hardware may better suit
local target applications. Discrepancy between x50 factor re-
ported in Sec. 4.3 is due to dataloader and metrics overhead.
Runtimes should be taken as initial reference only as im-
plementations are not optimized; exemplary, improvements
could be achieved by transferring thresholding to GPU, re-
placing the here not considered CPU-based refinement and,
for the adaption, by optimizing the loss calculation.



Algorithm 2 Adapt and infer

Require: ImageNet pre-trained ResNet params Φ, frozen
Require: Kaiming uniform initialized params {θl}Ll=1 of g

Require: Task = {Iq, {Isi ,Ms
i }ki=1} ▷ k-shot input task

// Apply augmentation
1: Iq,aug ← augment(Iq)
2: {Is,augi }ki=1 ← {augment(Isi )}ki=1

// Forward pass through the backbone
3: F q ← ResNet(Iq; Φ))
4: {F s

i }ki=1 ← {ResNet(Isi ; Φ)}ki=1

5: F q,aug ← ResNet(Iq,aug; Φ)
6: {F s,aug

i }ki=1 ← {ResNet(Is,augi ; Φ)}ki=1

// Layer-wise adaption
7: for layer l← 1 to L do
8: for epoch e← 1 to nepochs do

// Forward pass through attached layers
9: F̂ q ← gl(F

q; θl)
10: {F̂ s

i }ki=1 ← {gl(F s
i ; θl)}ki=1

11: F̂ q,aug ← gl(F
q,aug; θl)

12: {F̂ s,aug
i }ki=1 ← {gl(F

s,aug
i ; θl)}ki=1

13: Evaluate L(gl) with Eq. 5 from main paper
14: Update θl with SGD: θl ← θl − α▽θl L(gl)
15: end for
16: q̂predl

← attention(F̂ q, F̂ s,Ms) ▷ compare, Eq.6
17: end for
18: q̂fused ← 1

L

∑
l upsample(q̂predl

) ▷ fuse, Eq. 7
19: M̂q ← thresh(q̂fused) ▷ binary pred., Eq. 8

Lines

shot Alg. 1+ 3+ 5+ 9+ 11+ 13+ 16 18+

1 2 4 20 21 1 1 11 1 4
3 - 20 - 1 - - 1 4

5 2 10 35 63 1 1 16 1 4
3 - 35 - 1 - - 1 4

Table 3. Runtime per line execution in pseudocode, milliseconds,
+ indicates inclusion of the following line. Note that lines within
the loop are executed more than once.

shot baseline[5] Alg. 2 Alg. 3

1 64 3700 36
5 320 5300 54

Table 4. Runtime for predicting one task in milliseconds.

Algorithm 3 Infere only (quick-infer)

Require: ImageNet pre-trained ResNet params Φ, frozen
Require: {θl}Ll=1 fitted by Algorithm 2, now frozen

Require: Task = {Iq, {Isi ,Ms
i }ki=1} ▷ k-shot input task

1:
2:

// Forward pass through the backbone
3: F q ← ResNet(Iq; Φ))
4: {F s

i }ki=1 ← {ResNet(Isi ; Φ)}ki=1

5:
6:

// Layer-wise adaption
7: for layer l← 1 to L do
8:

// Forward pass through attached layers
9: F̂ q ← gl(F

q; θl)
10: {F̂ s

i }ki=1 ← {gl(F s
i ; θl)}ki=1

11:
12:

13:
14:
15:
16: q̂predl

← attention(F̂ q, F̂ s,Ms) ▷ compare, Eq.6
17: end for
18: q̂fused ← 1

L

∑
l upsample(q̂predl

) ▷ fuse, Eq. 7
19: M̂q ← thresh(q̂fused) ▷ binary pred., Eq. 8

In the pseudocode in Algorithms 2 and 3, operations
printed in green are equally performed for both procedures,
red lines are specific to the fitting process, equation numbers
refer to the main paper, α is the learning rate, L is the number
of layers, nepochs is the number of iterations, all specified in
the implementation details in Sec 4.1.
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