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Overview
In this Supp., we provide additional experimental results,
additional analysis, limitation of existing MI defenses, de-
tailed experiment setting, detailed reproducibility, and qual-
itative results. These are not included in the main paper due
to the space limitation. The PyTorch code, a demonstration,
inverted data, and pre-trained models are available at our
project page: https://hosytuyen.github.io/projects/TL-DMI
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A. Additional Results

A.1. Additional result on BREPMI

Defense Acc ⇑ AttAcc ⇓ ∆ ⇑ KNN ⇑

No Def. 89.00 69.67 - 1337.01

BiDO 80.35 39.73 3.46 1534.48

TL-DMI 83.41 42.00 4.90 1517.38

Table 1. Empirical results for BREPMI [10]. Following the ex-
act experimental setups from BREPMI, Dpriv = CelebA, Dpub

= CelebA, evaluation model = FaceNet, and target classifier T =
VGG16, there are a total of 300 attacked classes. Our proposed
TL-DMI achieves better MI robustness, which is quantified by MI
robustness is quantified by the ∆, the ratio of drop in attack
accuracy to drop in natural accuracy

A.2. Additional Empirical Validation on GMI

Beside the empirical validation on VGG16 with KEDMI
and ResNet-18 with PPA presented in the main manuscript.
We also provide additional empirical validation on VGG16
with GMI in Fig. 1. The observation is consistent with the
results in the main manuscript.

Defense Acc ⇑ AttAcc ⇓ ∆ ⇑
No Def. 90.55 83.87 -
TL-DMI 85.60 19.25 13.05

Table 2. We follow the MI setup from MIRROR, where T =
ResNet-34, Dpriv = Stanford Cars, Dpub = LSUN Cars, Dpretrain

= ImageNet1K.

https://hosytuyen.github.io/projects/TL-DMI


Figure 1. Empirical Validation on VGG16 with GMI. Each line
represents one training setup for T with a different |θC | updated
on Dpriv . Note that number of parameters for the entire target
model |θT | = 16.8M for this MI setup. To separate the influence
of natural accuracy on MI attack accuracy, we perform GMI at-
tacks on different checkpoints for each training setup, varying a
wide range of natural accuracy. This is presented by multiple data
points on each line. For a given natural accuracy, it can be clearly
observed that attack accuracy can be reduced by decreasing |θC |,
i.e., decreasing parameters updated on Dpriv .

A.3. Additional result on LOMMA

Due to the remarkably simple implementation of our pro-
posed TL-DMI, we expand the MI robustness evaluation to
LOMMA [14], is the SOTA MI attacks. Note that this MI
attack has not been included yet in SOTA MI defense BiDO.
The results in Tab. 6 shown that TL-DMI is able to defense
against SOTA MI attack LOMMA. For a fair comparison,
we strictly follow LOMMA for the MI setups.

A.4. Additional result on Stanford Cars dataset

We further show the effectiveness of our proposed TL-DMI
on Dogs breeds classification (see Tab. 4) and additional
Cars Classification in Tab. 2. The results further show the
effectiveness of TL-DMI.

A.5. Additional results on other MI setups

We further provide 3 more setups with PPA in Tab. 4 in
this rebuttal. All results consistently support outstanding
defense trade-off with TL-DMI

A.6. Comparison with SOTA MI Defense

We provide a comprehensive comparisons between our pro-
posed TL-DMI and BiDO and MID under 6 attacks: VMI,
LOMMA, PPA, KEDMI, GMI, and BREPMI. To avoid the
effect of randomness in our comparison, we calculate ∆ un-
der 3 attacks of different random seeds. We summarize the
comparison in Tab. 5. All results consistently support that

Attack Defense Acc ⇑ AttAcc ⇓ ∆ ⇑

PPA

No Def. 94.86 82.83 ± 0.17 -
MID (0.05) 90.85 52.09 ± 0.45 7.67 ± 0.09
MID (0.02) 91.54 61.67 ± 0.33 5.77 ± 0.06
MID (0.01) 92.70 75.84 ± 0.60 2.11 ± 0.15

TL-DMI 90.10 31.70 ± 0.17 10.74 ± 0.05

LOMMA

No Def. 89.00 93.68 ± 1.94 -
MID (0.002) 78.06 76.51 ± 0.27 1.57 ± 0.20
MID (0.003) 75.83 78.73 ± 1.88 0.28 ± 0.29
MID (0.004) 72.87 76.14 ± 0.90 1.09 ± 0.10

TL-DMI 83.41 72.47 ± 2.85 3.79 ± 0.19

Table 3. Varying MID hyperparameters, we conduct three com-
parisons, reporting mean and standard deviation.

Attack T Defense Acc ⇑ AttAcc ⇓ ∆ ⇑

PPA

ResNet-18 No Def. 94.22 47.41 ± 0.18 -
TL-DMI 91.12 5.19 ± 0.23 13.62 ± 0.04

ResNet-101 No Def. 96.57 38.99 ± 0.19 -
TL-DMI 93.01 6.66 ± 0.12 9.08 ± 0.03

MaxViT No Def. 96.57 31.79 ± 0.20 -
TL-DMI 93.01 4.11 ± 0.16 7.78 ± 0.03

Table 4. Additional MI setups for PPA, where Dpriv = FaceScrub,
Dpub = Metfaces, Dpretrain = ImageNet1K.

TL-DMI outperforms BiDO and MID
For BiDO reproducibility, we follow the exact hyper-

paremeters from their work. Note that BiDO is the best de-
fense by far, but it requires extensive grid-search for hyper-
parameters. For MID reproducibility, we adopt their imple-
mentation and hyperparameters. Furthermore, we provide
the results for MID with different hyperparameter choices
in Tab. 3.

B. Additional Analysis
B.1. The effect of pretrain dataset to MI robustness

In these above sections, we use a consistent and standard
pre-trained dataset to ensure fair comparison with other
methods in the literature. Since the pre-trained backbone
can be produced with different datasets in practice, we in-
vestigate the impact of different pre-trained datasets on MI
robustness in this section. Specifically, we implement the
same setup as the KEDMI setup for VGG16, but vary three
different pre-trained datasets: ImageNet1K, Facescrub, and
Pubfig83. The results are shown in Fig. 2.

Updating all parameters |θC | = 16.8M on Dpriv , yields
no significant differences among different Dpretrain. This
is expected and align with our understanding, where all the
parameters in T are exposed to private data during the train-
ing of T . With fewer trainable parameters on Dpriv , we
notice clearer differences. Overall, pre-training on a closer
domain (Pubfig83 and Facescrub) restores natural accuracy
much better than pre-training on a general domain (Ima-



Attack T Defense Acc ⇑ AttAcc ⇓ ∆ ⇑

LOMMA VGG-16

No Def. 89.00 93.68 ± 1.94 -
MID 78.06 76.51 ± 0.27 1.57 ± 0.20
BiDO 80.35 66.22 ± 3.74 3.17 ± 0.29

TL-DMI 83.41 72.47 ± 2.85 3.79 ± 0.19

PPA

ResNet-18

No Def. 94.22 90.08 ± 1.40 -
MID 88.27 48.81 ± 0.28 6.94 ± 0.22
BiDO 91.33 76.65 ± 0.09 4.65 ± 0.46

TL-DMI 91.12 21.32 ± 0.90 22.18 ± 0.74

ResNet-101

No Def. 94.86 82.83 ± 0.17 -
MID 90.85 52.09 ± 0.45 7.67 ± 0.09
BiDO 90.32 67.43 ± 0.36 3.39 ± 0.09

TL-DMI 90.10 31.70 ± 0.17 10.74 ± 0.05

KEDMI VGG-16

No Def. 89.00 87.71 ± 2.73 -
MID 78.06 66.64 ± 0.78 1.93 ± 0.30
BiDO 80.35 39.77 ± 5.60 5.54 ± 0.33

TL-DMI 83.41 51.64 ± 1.97 6.45 ± 0.59

BREP-MI VGG-16

No Def. 89.00 70.56 ± 1.84 -
MID 78.06 16.47 ± 1.07 4.91 ± 0.26
BiDO 80.35 39.35 ± 0.90 3.61 ± 0.16

TL-DMI 83.41 41.22 ± 0.69 5.24 ± 0.41

VMI ResNet-34

No Def. 69.27 39.40 -
MID 52.52 29.05 0.62
BiDO 61.14 30.25 1.13

TL-DMI 62.20 21.73 ± 2.08 2.5 ± 0.30

GMI VGG-16

No Def. 89.00 31.25 ± 1.04 -
MID 78.06 28.78 ± 1.24 0.25 ± 0.16
BiDO 80.35 6.31 ± 0.54 2.88 ± 0.15

TL-DMI 83.41 8.47 ± 0.58 4.08 ± 0.11

Table 5. We re-run three comparisons, presenting mean and stan-
dard deviation. Following VMI setup from BiDO, we encounter
code reproducibility issues, and we take the best result reported in
BiDO paper.

genet1K).

Figure 2. The effect of different Dpretrain, i.e., ImageNet1K, Pub-
fig83, and Facescrub. We use T = VGG16, Dpriv = CelebA. The
results suggest that the less similarity between pretrain and private
dataset domains can improve defense effectiveness.

For instance, with |θC | = 2.1M, pre-training on Face-
scrub and Pubfig83 achieve 81.48% and 69.41% accuracy,

Figure 3. We follow KEDMI-VGG16 and PPA-ResNet-18 setups
in Fig. 1-II. Fine-tuning first layers (green line), rather than middle
layers (orange line), enhances MI attack accuracy, corroborating
our analysis: first layers are important for MI.

respectively, compared to 29.59% in the Imagenet1K setup.
Nevertheless, pre-training on a closer domain also increases
the risk of MI attack. As those frozen parameters dur-
ing the fine-tuning on Dpriv keep the feature representa-
tions from Dpretrain, thus, the closer the Dpretrain, the
riskier it is for the model against MI attack. Notably, with
|θC | = 15.0M, models pre-training on ImagNet1K and Pub-
fig83 achieve comparable accuracy. However, using Ima-
geNet1K as Dpretrain renders a more robust model (de-
creasing MI attack accuracy by 8.06%) than the setup of
Pubfig83. In conclusion, when using our TL-DMI to train
a MI robust model, it is critical to choose the Dpretrain for
a trade-off between restoring model utility and robustness.
Specifically, less similarity between pretrain and private
dataset domains can improve defense effectiveness.

B.2. Layer-wise MI Vulnerability Analysis

we conduct the following experiments which strongly cor-
roborate our analytical results. Specifically, instead of fine-
tuning the middle layers, we fine-tune the first layers, see
Fig. 3 in this rebuttal. This single change significantly
degrades the defense performance and helps MI attacks,
which corroborate our analytical results: first layers are im-
portant for MI based on our Fisher Information analysis;
therefore, fine-tuning the first layers with private dataset
helps MI attacks significantly. As another detail to further
corroborate our analysis, we remark that first layers have
less parameters than middle layers. Yet, MI attacks perform
better with fine-tuning private dataset in first layers. This
further supports first layers are important for MI. We remark
that last layers are critical for classification task, consistent
with TL literature. The natural accuracy is much degraded
if fine-tuning of last layers is removed.

B.3. Additional Analysis of Layer Importance

FI across MI iterations. MI is a multiple iteration process.
The FI for MI in the main manuscript is computed at the last
iteration (the iteration that we present the result throughout
our submission). Fig. 5 also provides the FI across multiple



Attack
Method

Dpriv Dpub Dpretrain T Defense
Method

|θC |/|θT | Acc ⇑ Top1-AttAcc
⇓

Top5-AttAcc
⇓

KNN
Dist ⇑

LOMMA-K

CelebA CelebA

ImageNet1K VGG16 No Def. 16.8/16.8 89.00 95.67 ± 0.91 96.68 ± 0.01 1158
TL-DMI 13.9/16.8 83.41 75.67 ± 1.83 91.68 ± 0.01 1304

MS-CelebA-1M
IR152 No Def. 62.6/62.6 93.52 96.40 ± 0.51 99.67 ± 0.15 1038

TL-DMI 17.8/62.6 86.70 77.73 ± 1.57 94.67 ± 0.66 1305

FaceNet64 No Def. 35.4/35.4 88.50 89.33 ± 1.19 98.67 ± 0.15 1226
TL-DMI 34.4/35.4 83.41 79.60 ± 1.78 97.00 ± 0.61 1345

CelebA FFHQ

ImageNet1K VGG16 No Def. 16.8/16.8 89.00 58.60 ± 1.67 86.00 ± 1.14 1390
TL-DMI 13.9/16.8 83.41 36.00 ± 1.28 65.00 ± 1.95 1550

MS-CelebA-1M
IR152 No Def. 62.6/62.6 93.52 73.47 ± 1.30 90.00 ± 0.85 1290

TL-DMI 17.8/62.6 86.70 45.27 ± 1.98 74.33 ± 1.25 1474

FaceNet64 No Def. 35.4/35.4 88.50 70.27 ± 1.63 90.33 ± 0.72 1391
TL-DMI 34.4/35.4 83.41 19.53 ± 1.19 41.33 ± 1.34 1759

LOMMA-G

CelebA CelebA

ImageNet1K VGG16 No Def. 16.8/16.8 89.00 56.00 ± 3.65 79.00 ± 3.84 1454
TL-DMI 13.9/16.8 83.41 22.00 ± 4.77 45.33 ± 9.08 1709

MS-CelebA-1M
IR152 No Def. 62.6/62.6 93.52 64.67 ± 5.54 86.00 ± 5.09 1401

TL-DMI 17.8/62.6 86.70 41.87 ± 5.37 70.67 ± 5.97 1551

FaceNet64 No Def. 35.4/35.4 88.50 60.00 ± 5.90 80.00 ± 3.81 1501
TL-DMI 34.4/35.4 83.41 43.67 ± 5.60 65.00 ± 6.82 1616

CelebA FFHQ

ImageNet1K VGG16 No Def. 16.8/16.8 89.00 27.00 ± 6.10 52.33 ± 5.82 1642
TL-DMI 13.9/16.8 83.41 8.87 ± 3.12 24.00 ± 5.50 1829

MS-CelebA-1M
IR152 No Def. 62.6/62.6 93.52 45.20 ± 4.30 70.67 ± 4.58 1503

TL-DMI 17.8/62.6 86.70 22.87 ± 5.05 43.67 ± 7.46 1650

FaceNet64 No Def. 35.4/35.4 88.50 30.60 ± 5.21 62.00 ± 5.69 1625
TL-DMI 34.4/35.4 83.41 9.33 ± 4.55 24.33 ± 4.55 1909

Table 6. Our extended MI robustness evaluation on SOTA MI attack LOMMA [14]. The results of AttAcc and Acc are given in %. We
reports the MI defense results against different LOMMA attack setups including LOMMA+KEDMI (LOMMA-K) and LOMMA+GMI
(LOMMA-G) with the varying in different public datasets Dpub (CelebA and FFHQ), and pre-trained datasets Dpretrain (Imagenet1K and
MS-CelebA-1M).

iterations. We observe that after a few iterations, the FI for
earlier layers keeps dominant compared to the later layers.

Different MI losses. In the main manuscript, we use
l2 distance to compute the MI loss. In addition, we provide
FI results using l1 distance and LPIPS [25] to compute the
MI loss. The FI results obtained using different MI loss
functions are consistent with our main FI observation in the
main manuscript.

These additional FI results are consistent with those in
our main FI observation in the main manuscript.

B.4. MI Robustness via the False Positive Concept

We provide additional analysis in this Appendix to provide
a clear understanding of how our proposed TL-DMI effec-
tively defends against MI attacks, leading to more false pos-
itive during MI attacks and decrease in attack accuracy.

As discussed, it has been shown that when a deep neu-
ral network-based classifier, denoted as T = C ◦ E, is

pre-trained on a large-scale dataset Dpretrain, the features
learned in the earlier layers E are transferable to another
somewhat related classifier on datasets Dpriv , enabling the
model to maintain its natural accuracy without explicitly
updating its parameters on Dpriv in the earlier layers [23].
This transferability of features benefits our proposed TL-
DMI through maintaining the model classification perfor-
mance and natural accuracy.

In contrast, MI attacks require accurate features to re-
construct the private training dataset Dpriv . By refraining
from updating E on Dpriv , we limit the leakage of private
features into E, thereby improving MI robustness. Specifi-
cally, recall MI attacks are usually formulated as:

w∗ = argmin
w

(− logPT (y|G(w)) + λLprior(w)) (1)

Therefore, MI attacks aim to seek w with high likeli-
hood PT (y|G(w)). We make this key observation to un-



Figure 4. FI distributions across layers during all MI steps. We conduct FI analysis on the main setup in Peng et al [15] where the MI
attack is KEDMI [3], T=VGG16, Dpriv=CelebA and Dpub=CelebA. In the main manuscript, we present the FI analysis at the last MI
iteration, i.e., iteration 3000. This figures present a more comprehensive FI analysis across multiple iterations. After first few iterations,
we consistently observe that the earlier layers are more important to MI task.

Figure 5. FI distributions across layers via different FI losses. We conduct FI analysis on the main setup in Peng et al [15] where the MI
attack is KEDMI [3], T=VGG16, Dpriv=CelebA and Dpub=CelebA. In the main manuscript, we use l2 distance between reconstructed
images and private images as MI loss for the FI analysis. This figure presents the FI analysis through other distances including l1, LPIPS-
VGG [25], LPIPS-ALEX [25]. The results show the consistent observation that the earlier layers of a network are more important to MI
attacks compared with later layers.

derstand how our proposed TL-DMI can degrade MI task:
With TL-DMI, while latent variables with high likelihood
PT (y|G(w)) can still be identified via Eq. 1, many w∗ are
false positives, i.e. G(w∗) do not resemble private sam-
ples. This results in decrease in attack accuracy. This can
be observed from the likelihood distributions PT|θC |=16.8M

and PT|θC |=13.9M
for both KEDMI (see Fig. 6) and GMI

(see Fig. 7), which are similar and close to 1. These find-
ings indicate that with our proposed TL-DMI, Eq. 1 could
still perform well to seek latent variables w to maximize the

likelihood PT (y|G(w)). However, although likelihood dis-
tributions PT|θC |=16.8M

and PT|θC |=13.9M
are similar under

attacks, the attack accuracy of model with |θC | = 13.9M
is significantly lower than that with |θC | = 16.8M . This
suggests that, due to lack of private data information in E
in our proposed TL-DMI model |θC | = 13.9M , many w∗

do not correspond to images resembling private images.
In the setup where |θC | = 16.8M , the optimization pro-

cess causes the latent variables w to converge towards re-
gions that are closer to the private samples. This outcome is



Figure 6. Visualization of the distribution of PT for two models: the no defense model (with |θC | = 16.8M ) and TL-DMI proposed
approach (with |θC | = 13.9M ). The visualization is conducted using KEDMI as the attack method, with Dpriv = CelebA, Dpub =
CelebA, Dpretrain = Imagenet1K, and T = VGG16. We observe that both our proposed TL-DMI model and the model without defense
exhibit similar distributions of PT . The values of PT for both successfully and unsuccessfully reconstructed images are very close to 1 in
both cases. However, the attack accuracy shows a significant drop from 90.87 to 51.67 when our proposed TL-DMI is applied.

expected since the model possesses richer low-level features
from the private dataset Dpriv in both E and C. Conse-
quently, we observe more true positives after MI optimiza-
tion, where the likelihood PT (y|G(w)) is well maximized,
and the evaluation model successfully classifies them as la-
bel y.

In contrast, in the setup where |θC | = 13.9M , the lack
of low-level features from Dpriv in E hinders the optimiza-
tion process. As a result, we observe a higher number of
false positives after MI optimization. Although these in-
stances successfully maximize the likelihood PT (y|G(w)),
the evaluation model is unable to classify them as label y
correctly. Therefore, this behavior indicates a higher level
of robustness against the MI attack.

C. The limitation of Existing MI Defenses
Conflicting objectives between classification and MI de-
fense regularizers: One limitation of the existing MI de-
fenses [15, 22] is the introduction of additional regularizers
that conflict with the primary objective of minimizing the
classification loss [15]. This conflict often leads to a signif-
icant decrease in the overall model utility.

BiDO is sensitive to hyper-parameters. BiDO [15],

while attempting to partially recover model utility, suffers
from sensitivity to hyper-parameters. Optimizing three ob-
jectives simultaneously is a complex task, requiring careful
selection of weights to balance the three objective terms.
The Tab. 10 results in an explicit accuracy drop when
adjusting hyper-parameters λx and λy even with a small
change. The optimized values for λx and λy in BiDO
are obtained through a grid search [15]. For example,
in the case of BiDO-HSIC, the authors tested values of
λx ∈ [0.01, 0.2] and λy

λx
∈ [5, 50]. Furthermore, BiDO

requires an additional parameter, σ, for applying Gaussian
kernels to inputs x and latent representations z in order to
utilize COCO [7] and HSIC [6] as dependency measure-
ments.

D. Experiment Setting

D.1. Detailed MI Setup

Attack Dataset. Following existing MI works [3, 14, 21,
26], our work forcuses on the study of CelebA [12]. Fur-
thermore we demonstrate the efficacy of our proposed TL-
DMI on other facial datasets with more attack classes (Face-
scrub [13]) or larger scale (VGGFace2 [2]) and on the an-



Figure 7. Visualization of the distribution of PT for two models: the no defense model (with |θC | = 16.8M ) and TL-DMI proposed
approach (with |θC | = 13.9M ). The visualization is conducted using GMI as the attack method, with Dpriv = CelebA, Dpub = CelebA,
Dpretrain = Imagenet1K, and T = VGG16. We observe that both our proposed TL-DMI model and the model without defense exhibit
similar distributions of PT . The values of PT for both successfully and unsuccessfully reconstructed images are very close to 1 in both
cases. However, the attack accuracy shows a significant drop from 90.87% to 51.67% when our proposed TL-DMI is applied.

First run Second run Third run Average
Architecture MI Attack Natural Acc ⇑ Attack Acc ⇓ Natural Acc ⇑ Attack Acc ⇓ Natural Acc ⇑ Attack Acc ⇓ Natural Acc ⇑ Attack Acc ⇓

KEDMI 51.67 ± 3.93 49.67 ± 4.86 53.60 ± 4.06 51.65 ± 4.28
VGG16 GMI 83.41 7.80 ± 3.36 83.11 8.80 ± 2.28 83.54 8.80 ± 3.36 83.35 8.47 ± 3.00

Resnet-34 VMI 62.2 23.70 ± 21.38 62.88 19.55 ± 12.90 63.12 21.95 ± 12.36 62.73 21.73 ± 15.91

KEDMI 64.60 ± 4.93 71.6 ± 4.85 69.33 ± 5.03 68.51 ± 4.94
IR152 GMI 86.7 8.93 ± 3.73 86.47 9.47 ± 2.57 86.37 9.60 ± 4.16 86.51 9.33 ± 3.49

KEDMI 73.40 ± 4.10 76.27 ± 4.09 76.20 ± 3.96 75.29 ± 4.05
FaceNet64 GMI 83.61 15.73 ± 4.58 83.01 15.93 ± 5.20 82.71 13.6 ± 3.97 83.11 15.09 ± 4.58

Table 7. We present the results for running experiments multiples time to show the reproducibility of our proposed TL-DMI. For KEDMI
[3]/GMI [26], we conduct the attacks with Dpriv = CelebA, Dpub = CelebA, Dpretrain = Imagenet1K, and T = VGG16/IR152/FaceNet64.
For VMI [21], we conduct the attacks with Dpriv = CelebA, Dpub = CelebA, T = Resnet-34, and there is no Dpretrain for this setup.

imal dataset Stanford Dogs [11]. The details for these
datasets used in the experimental setups can be found in
Tab. 9.

Attack Data Preparation Protocol. Following previous
works [1, 3, 14, 19, 21, 26] approaches, we split the dataset
into private Dpriv and public Dpub subsets with no class
intersection. Dpriv is used to train the target classifier T,
while Dpub is used to extract general features only.

Target Classifier T . We select VGG16 for T for a fair
comparison with SOTA MI defense [15]. As our proposed

TL-DMI is architecture-agnostic, we also extend the de-
fense results on more common and recent architectures: i.e.,
IR152 [9], FaceNet64 [4], Resnet-34, Resnet-18, Resnet-50
[9], ResNeSt-101 [24], and MaxViT [20], which are not ex-
plored in previous MI defense setups [15, 22].

Pre-trained Dataset for Target Classifier Dpretrain.
We use Imagenet-1K [5] for VGG16, Resnet-18/50,
ResNeSt-101, and MaxViT, and MS-CelebA-1M [8] for
IR152 and FaceNe64, following previous works [3, 26].
For Resnet-34, since it is trained from scratch in the orig-



Architecture Dataset Input Resolution #Epoch Batch size Learning rate Optimizer Weight Decay Momentum

VGG16 CelebA 64x64 200 64 0.02 SGD 0.0001 0.9

IR152 CelebA 64x64 100 64 0.01 SGD 0.0001 0.9

FaceNet64 CelebA 64x64 200 8 0.008 SGD 0.0001 0.9

Resnet-34 CelebA 64x64 200 64 0.1 SGD 0.0005 0.9

Resnet-18 CelebA 224x224 100 128 0.001 Adam - -

MaxViT CelebA 224x224 100 64 0.001 Adam - -

ResNeSt-101 Stanford Dogs 224x224 100 128 0.001 Adam - -

Resnet-50 VGGFace2 224x224 100 1024 0.001 Adam - -

Table 8. Training settings for target classifier T . We follow the procedure for training T from previous works [3, 14, 19]
.

#Classes #Images #Attack Classes
CelebA 1,000 27,018 300

Facescrub 530 106,863 530
VGGFace2 8,631 3.31M 100

Stanford Dogs 120 20,580 120

Table 9. MI Private Dataset Setting. We follow previous works
[1, 3, 14, 19, 21, 26] for the datasets selection.

λx 0.05 0.05 0.05 0.06 1.0 1.0 1.0

λy 0.5 0.4 0.6 0.5 0.5 5.0 10.0

Natural Acc 80.35 73.69 76.46 76.13 23.27 57.57 57.04

Table 10. The SOTA MI defense, BiDO is sensitive to hyper-
parameters, posing challenges for applying effectively to differ-
ent architectures of target classifier T or private dataset Dpriv .
BiDO simultaneously optimizes two objectives: d(x, f) (limiting
information of input x and feature representations f ) and d(f, y)
(providing sufficient information about label y to f ), in addi-
tion to the main objectives L. Therefore, the final objective is
L+λxd(x, z)+λyd(f, y), where careful weight selection for λx

and λy is necessary to achieve a balanced training among three ob-
jectives. It is clear that inappropriate values of λx and λy in BiDO
cause an unstable training T . Note that [15] requires an extensive
grid search to determine suitable values for λx and λy

inal VMI setup [21], we freeze the layers initialized from
scratch. In Sec. B, we also study two additional pre-trained
datasets, Facescrub [13] and Pubfig83 [16].

MI Attack Method. Our work focuses on white-box at-
tacks, the most effective method in the literature. Following
the SOTA MI defense [15], we evaluate our proposed TL-
DMI against three well-known attacks: GMI [26], KEDMI
[3], and VMI [21]. We further evaluate our proposed TL-
DMI against current SOTA MI attacks as well as other
SOTA MI attacks LOMMA [14], PPA [19], and MIRROR
[1]. The details for MI attack setups can be found below
and in the Tab. 11:

• GMI [26] uses a pre-trained GAN to understand the im-

age structure of an additional dataset. It then identifies
inversion images by analyzing the latent vector of the
generator.

• KEDMI [3] expands on GMI [26] by training a discrim-
inator to differentiate between real and fake samples and
predict the label as the target model. The authors also
propose modeling the latent distribution to reduce in-
version time and enhance the quality of reconstructed
samples.

• VMI [21] introduces a probabilistic interpretation of MI
and presents a variational objective to approximate the
latent space of the target data.

• LOMMA [14] introduces two concepts of logit loss for
identity loss and model augmentation to improve at-
tack accuracy of previous MI attacks including GMI,
KEDMI, and VMI.

• PPA [19] proposes a framework for MI attack for high
resolution images, which enable the use of a single GAN
(i.e., StyleGAN) to attack a wide range of targets, re-
quiring only minor adjustments to the attack.

• MIRROR [1] proposes a MI attack framework based on
StyleGAN similar to PPA, which aims at reconstructing
private images having high fidelity.

• BREPMI [10] introduce a new MI attack that can re-
construct private training data using only the predicted
labels of the target model. The attack works by eval-
uating the predicted labels over a sphere and then esti-
mating the direction to reach the centroid of the target
class.

D.2. Evaluation metrics

In the main manuscript, we make use of Natural Accuracy,
Attack Accuracy, and K-Nearest-Neighbors Distance (KNN
Dist) metrics to evaluate MI robustness. These metrics are
described as:

• Attack accuracy (AttAcc). To gauge the effective-
ness of an attack, we develop an evaluation classifier
that predicts the identities of the reconstructed images.
This metric assesses the similarity between the gener-



#Iteration w clipping Learning
rate

#Attack
per class

GMI 3000 Yes 0.02 5

KEDMI 3000 Yes 0.02 5

VMI 320 - 0.0001 100

LOMMA 2400 Yes 0.02 5

PPA 50 Yes 0.005 50

MIRROR 500 Yes 0.25 8

Table 11. MI Attack Setups. We follow the MI setups from previ-
ous works [1, 3, 14, 15, 19]

Architecture Method λMID λx λy |θC | Natual Acc ⇑

VGG16

No. Def - - - 16.8 89.00
MID 0.01 - - - 68.39
MID 0.003 - - - 78.70

BiDO-COCO - 10 50 - 74.53
BiDO-COCO - 5 50 - 81.55
BiDO-HSIC - 0.05 1 - 70.31
BiDO-HSIC - 0.05 0.5 - 80.35

TL-DMI - - - 15.0 86.57
TL-DMI - - - 13.9 83.41
TL-DMI - - - 11.5 77.89
TL-DMI - - - 9.1 69.80

TL-DMI + BiDO-HSIC - 0.05 0.4 15.0 84.31
TL-DMI + BiDO-HSIC - 0.03 0.4 15.0 82.15

Resnet-34

No. Def - - - 21.5 69.27
MID 0 - - - 52.52

BiDO-COCO - 0.05 2.5 - 59.34
BIDO-HSIC - 0.1 2 - 61.14

TL-DMI - - - 21.1 62.20

IR152
No. Def - - - 62.6 93.52
TL-DMI - - - 17.8 86.70

FaceNet64
No. Def - - - 35.4 88.50
TL-DMI - - - 34.4 83.61

Resnet-18
No. Def - - - 11.7 95.30
TL-DMI - - - 8.9 91.17

MaxViT
No. Def - - - 30.9 96.57
TL-DMI - - - 18.3 93.00

ResNeSt-101
No. Def - - - 48.4 75.07
TL-DMI - - - 27.9 79.64

Table 12. Hyperparameters setting for training target classifiers.
We follow previous work [15] for the hyperparameters selection
of MID and BiDO.

ated samples and the target class. If the evaluation clas-
sifier attains high accuracy, the attack is considered suc-
cessful. To ensure an unbiased and informative evalu-
ation, the evaluation classifier should exhibit maximal
accuracy.

• Natural accuracy (Acc). In addition to assessing the
Attack Acc of a released model, it is also necessary to
ensure that the model performs satisfactorily in terms of
its classification utility. The evaluation of the model’s
classification utility is typically measured by its natural
accuracy, which refers to the accuracy of the model in
the classification problem.

• K-Nearest Neighbors Distance (KNN Dist). The KNN
Dist metric provides information about the proximity

Architecture Method Total Train-
ing Time
(Seconds) ⇓

Ratio ⇓ Natural Acc ⇑

VGG16

No. Def 2122 1.00 89.00
BiDO-COCO 3288 1.55 81.55
BiDO-HSIC 3296 1.55 80.35

TL-DMI 1460 0.69 83.41
TL-DMI + BiDO-HSIC 2032 0.96 84.14

IR152 No. Def 6019 1.00 93.52
TL-DMI 2808 0.47 86.70

FaceNet64 No. Def 16344 1.00 88.50
TL-DMI 14448 0.88 83.61

Table 13. Computational Resource. We remark that our proposed
TL-DMI achieve SOTA MI robustness while reduce the computa-
tional cost as we keep the same training protocol and update fewer
parameters than No. Def and SOTA MI Defense BiDO.

between a reconstructed image associated with a par-
ticular label or ID, and the images that exist in the pri-
vate training dataset. This metric is calculated by de-
termining the shortest feature distance between the re-
constructed image and the actual images in the private
dataset that correspond to the given class or ID. To cal-
culate the KNN Dist, an l2 distance measure is used be-
tween the two images in the feature space, specifically
in the penultimate layer of the evaluation model. This
distance measure provides insight into the similarity be-
tween the reconstructed and the real images in the train-
ing dataset for a particular label or ID.

• δEvalNet and δFaceNet These metrics are measured
by the squared l2 distance between the activation in the
penultimate layers. δEvalNet is computed via Evalua-
tion Model while δEvalNet is computed via pre-trained
FaceNet [17]. A lower value indicates that the attack
results are more visually similar to the training data.

• ℓ2 distance. ℓ2 distance measures how similar the
inverted images are to the private data by computing
the distance between reconstructed features the centroid
features of the private data. A lower distance means that
the inverted images are more similar to the target class.

• Frechet inception distance (FID). FID is commonly
used to evaluate generative model to access the gener-
ated images. The FID measures the similarity between
two sets of images by computing the distance between
their feature vectors. Feature vectors are extracted using
an Inception-v3 model that has been trained on the Im-
ageNet dataset. In the context of MI, a lower FID score
indicates that the reconstructed images are more similar
to the private training images.

E. Reproducibility

E.1. The details for training T

Training target classifier T . In this work, we employ
VGG16 [18], IR152 [9], and FaceNet64 [4] for our investi-



Figure 8. Qualitative results to showcase the effectiveness of our proposed TL-DMI, using KEDMI [3] with Dpriv = CelebA, Dpub =
CelebA, Dpretrain = Imagenet1K, and T = VGG16. The visual comparison reveals that our proposed TL-DMI achieves competitive
reconstruction of private data, while the hybrid approach combining our method with BiDO-HSIC demonstrates a significant degradation
in MI attack and reconstruction quality.

gation. All target classifiers are trained on CelebA dataset.
For GMI [26] and KEDMI [3], the target classifiers trained
were VGG16, IR152, and FaceNet64, while Resnet-34 was
used as the target classifier for VMI [21]. As mentioned in
the main manuscript, we employ Imagenet-1K as the pre-
trained dataset for VGG16, while MS-CelebA-1M was used
as the pre-trained dataset for IR152 and FaceNet64. The de-
tails of the training procedure are shown in Tab. 8 below.

Important Hyper-parameters. In our work, we per-
formed an analysis of our proposed TL-DMI against exist-
ing SOTA model inversion defense methods: MID [22] and
Bilateral Dependency Optimization (BiDO)[15]. MID [22]
adds a regularizer d(x, T (x)) to the main objective during
the target classifier’s training to penalize the mutual infor-
mation between inputs x and outputs T (x). BiDO [15] at-
tempts to minimize d(x, z) to reduce the amount of infor-
mation about inputs x embedded in feature representations
z, while maximizing d(z, y) to provide z with enough in-
formation about y to restore the natural accuracy. For sim-
plicity, we use λMID, λx, and λy to represent d(x, T (x)),
d(x, z), and d(z, y) respectively. The settings of these
hyper-parameters are detailed in Tab. 12.

E.2. Compute resource

All our experiments are run on NVIDIA RTX A5000 GPUs.
Given that our work is focused on model inversion defense,
we provide the total training time (seconds) for the target
classifier and the ratio of training time between each model
inversion defense method against the No. Def. The results
in Tab. 13 below show that our proposed TL-DMI can
greatly reduce the amount of time required to train the

Method NaturalAcc ⇑ AttackAcc ⇓ User Preference ⇓
BiDO 80.35% 45.80% 87.1%

BiDO+TL-DMI 82.15% 17.40% 12.9%

Figure 9. An example for the user study inference (top) and the
results for user study (bottom). Compared to BiDO, our proposed
TL-DMI provide a better defense with higher natural accuracy but
lower user preference.

target classifier.

E.3. Error Bars

For this section, we ran a total of 7 setups (3 times for each
setup) across 4 different architectures of the target classi-
fiers, and report their respective natural accuracy and attack
accuracy values. For each experiment, we use the same MI



attack setup and training settings for target classifiers as re-
ported in the main setups comparing with BiDO and Tab. 8
respectively. We show that the results obtained are repro-
ducible and do not deviate much from the reported values
in the main paper. These results can be found in Tab. 7 be-
low.

F. Qualitative results

F.1. Visual Comparison

We evaluate the efficacy of our proposed TL-DMI along
with BiDO for preventing privacy leakage on CelebA and
also provide visualisation of the samples produced using
the KEDMI [3] MI attack method. In Fig. 8 below, each
column represents the same identity and the first row rep-
resents the ground-truth private data while each subsequent
row shows the attack samples reconstructed for each MI de-
fense method.

F.2. User study

We conduct our user study via Amazon MTurk with the
interface as shown above. We adapt our user study from
MIRROR. In the setup, participants are presented with a
real image of the target class, and then asked to pick one
of two inverted images that is more closely aligned with the
real image. The order is randomized, with each image pair
displayed on-screen for a maximum duration of 60 seconds.
The assessment encompassed all 300 targeted classes. Each
pair of inverted images is assigned to 10 unique individ-
uals, thus our user study involves a total of 3000 pairs of
inverted images. We use KEDMI as the MI attack with
Dpriv = CelebA, Dpub = CelebA, T = FaceNet .
Consistent with the AttackAcc, the user study shows that
our proposed TL-DMI provides better defense against the
reconstruction of private data characteristics compared to
BIDO.
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