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6. Benchmark Description
We provide detailed descriptions of the CAPE [45] and the
CustomHumans [22] dataset used for benchmark evalua-
tion in our study. The CAPE dataset includes sequences
of posed humans featuring 15 subjects. For evaluation
purposes, ICON [73] selected 100 frames, each consisting
of RGBA images from three viewpoints and an SMPL+D
(vertex displacements) ground-truth mesh. We identified
several limitations in the CAPE dataset (refer to Fig. 11)
Firstly, there is limited diversity in human outfits, as most
subjects wear tight clothing such as t-shirts and shorts.
Secondly, the images are rendered from unprocessed point
clouds, leading to rendering defects. Lastly, the ground-
truth meshes are of low resolution and do not fully corre-
spond to the input images. These issues suggest that experi-
ments conducted solely on the CAPE dataset may be biased.

To ensure an unbiased evaluation, we introduced a new
benchmark using the higher-quality, publicly available 3D
human dataset, CustomHumans [22]. Specifically, we se-
lected 60 textured human scans, each featuring different
outfits, for evaluation. For each scan, we rendered test im-
ages from four different viewpoints. Note that we directly
rasterize the textured scans to obtain the input images, en-
suring that the ground-truth mesh precisely corresponds to
the images. Fig. 10 showcases samples from our bench-
marks, highlighting the increased diversity of the clothing.

Figure 10. Examples of images and ground-truth scans in Cus-
tomHumans. Our new benchmark contains diverse and challeng-
ing human scans for evaluation.

7. Implementation Detail
7.1. Back-view Hallucination Module

We detail the implementation of our image-conditioned dif-
fusion model described in Sec. 3.1. Our model backbone
is based on the Stable Diffusion image variations [2] which
leverages CLIP features for cross-attention and VAE fea-
tures for concatenation in image conditioning. In both train-
ing and inference, the pretrained VAE autoencoder and the
CLIP image encoder are kept frozen. We initialize the dif-
fusion U-Net’s weights using the Zero-1-to-3 [41] model
and create a trainable ControlNet [77] model following the
default network setups but with an adjustment to the in-
put channels. The ControlNet inputs contain 4 channels of
masks and UV images with an optional 4 channels of cam-
era view angles. The camera view angles are essential only
when generating images from arbitrary viewpoints (instead
of only back-view). The ControlNet model and the diffu-
sion U-Net’s cross-attention layers are jointly trained with
512⇥ 512 resolution multi-view images, rendered from the
THuman2.0 dataset [75].

For each scan in THuman2.0, we render front-back im-
age pairs from 20 camera angles, resulting in around 10k
training pairs. We also randomly change the background
colors for data augmentation. For training, we utilize a
batch size of 16 images and set the learning rate to 4⇥10�6
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Figure 11. Defects in the CAPE dataset. The rendering defects from incomplete point clouds result in a notable discrepancy between the
input images and the ground-truth meshes in the CAPE dataset.

incorporating a constant warmup scheduling. The Control-
Net model’s conditioning scale is fixed at 1.0. We employ
classifier-free guidance in our training, which involves a
dropout rate of 0.05 for the image-conditioning. The train-
ing takes about two days on one NVIDIA A100 GPU for
10k steps. During inference, we apply a classifier-free guid-
ance scale of 2.5 to obtain the final output images.

7.2. Mesh Reconstruction Module
We follow the methodology of PIFuHD [61], using the
HourGlass [50] and the fully convolutional [30] model as
our image feature extractors and the normal predictor, re-
spectively. The feature extractors yield a 32-dimensional
feature map for feature querying. Our geometry MLP is
designed with five layers of 512-dimensional linear layers,
each followed by a leakyReLU activation function. Skip
connections are applied at the third, fourth, and fifth layers.
On the other hand, the texture MLP comprises four layers
of 256-dimensional linear layers, with skip connections at
the third and fourth layers.

We first train the normal predictor using normal images
rendered from the THuman2.0 dataset. We optimize the
normal predictor with an L1 reconstruction loss for 600
epochs. Subsequently, we proceed to jointly train the fea-
ture extractor and the SDF MLPs with a learning rate of
0.001 and a batch size of 2 scans. The normal predictor is
jointly fine-tuned with a learning rate 1⇥ 10�5. We set the
hyperparameter �n to 0.1. During each training iteration,
we sample 40,960 query points within a thin shell surround-
ing the ground-truth mesh surfaces. The entire training pro-
cess requires approximately five days on a single NVIDIA
A100 GPU for 800 epochs on the THuman2.0 dataset. Fi-
nally, we train the other feature extractor and the RGB
MLPs with a learning rate of 0.001 and a batch size of 2
scans for 200 epochs. During inference, a 3D textured mesh
can be reconstructed under two minutes with an NVIDIA
3090 GPU. This includes pose estimation and mask predic-
tion (3s), generation of a back-view image (4.5s), alignment

Method SSIM" LPIPS# KID
(⇥10�3)#

Joints Err.
(pixel)#

Pix2PixHD [69] 0.816 0.141 86.2 53.1
DreamPose [31] 0.844 0.132 86.7 76.7
Zero-1-to-3 [41] 0.862 0.119 30.0 73.4
ControlNet [77]
+Interrogate 0.851 0.202 39.0 35.7

SiTH (Ours) 0.950 0.063 3.2 21.5

Table 4. Hallucination comparison on CustomHumans. We
compute image metrics between the generated and ground-truth
back-view images. Our method achieved the best image quality
and pose accuracy.

of the body mesh and the input images (10s), and mesh re-
construction at the marching cube resolution of 5123 (60s).

8. More Experimental Results
8.1. Image Quality Comparison
We carry out a quantitative evaluation on the images gen-
erated by Pix2PixHD [69], DreamPose [31], Zero-1-to-
3 [41], ControlNet [77], using ground-truth back-view im-
ages for comparison (see Tab. 4). To assess the image
quality, we employ various metrics, including multi-scale
Structure Similarity (SSIM) [70], Learned Perceptual Im-
age Patch Similarity (LPIPS) [78], Kernel Inception Dis-
tance (KID) [6], and 2D joint errors using a pose predic-
tor [44]. Our method demonstrates better performance over
the others in terms of similarity, quality, and pose accuracy.

In Fig. 12, we present additional results generated by
these methods. DreamPose exhibits overfitting issues, fail-
ing to accurately generate back-view images with the cor-
rect appearances. Although ControlNet successfully pre-
dicts images with correct poses, it shows less accuracy in
text conditioning, particularly in generating inconsistent ap-
pearances. Zero-1-to-3, shows instability in view-point con-
ditioning, resulting in a noticeable variance in the human
body poses in the generated images. In contrast, our method
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Figure 12. Qualitative comparison of back-view hallucination. We visualize back-view images generated by the baseline methods. Note
that the three different images are sampled from different random seeds. Our results are perceptually close to the ground-truth image in
terms of appearances and poses. Moreover, our method also preserves generative stochasticity for handling hairstyles and clothing colors.

not only produces more faithful back-view images but also
handles stochastic elements such as hairstyles and clothing
colors.

8.2. 3D Reconstruction Plugin

We demonstrate that our hallucination module can be seam-
lessly integrated into existing single-view clothed human
reconstruction pipelines. We implemented variants of
ICON, ECON, and PIFuHD by providing them back normal
from our generated back-view images (denoted as +BH).
These are then compared to the original methods and their
respective variants using the Zero-1-to-3 model as a plugin
(denoted as -123). As shown in Fig. 13, integrating Zero-1-

to-3 with these methods did not produce satisfactory cloth-
ing geometry. In contrast, our hallucination module yielded
more realistic clothing wrinkles and enhanced the percep-
tual quality of ICON, ECON, and PIFuHD. Note that even
though we provide additional images with these baselines,
our pipeline still produced more detailed geometry and cor-
rect body shapes. This again verifies the importance and
effectiveness of our mesh reconstruction module.

The quantitative results, presented in Table Tab. 5, fur-
ther support these findings. We observed that the combina-
tion of Zero-1-to-3 with these methods did not lead to sig-
nificant improvements. However, our hallucination module
slightly enhanced the 3D metrics for ICON and ECON but
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Figure 13. Reconstruction plugin. We replaced the back normal
images typically used in existing 3D reconstruction methods with
our generated back-view images. This modification enhances the
perceptual qualities of these baseline methods.

had a marginally negative impact on PIFuHD. The reason
can be observed from Fig. 13 where PIFuHD tends to pro-
duce smooth surfaces that result in better numeric perfor-
mance. ICON and ECON benefit from our hallucinations
since their original model produced artifacts and incorrect
clothing details. This finding also confirms the necessity of
our user studies in Sec. 4.2 since the visual quality is hard
to measure by the existing metrics.

Method Pred-to-Scan /
Scan-to-Pred (mm)# NC" f-Score"

ICON [73] 22.562 / 27.954 0.791 30.437
ICON-123 -0.716 / -3.478 -0.004 +2.991
ICON+BH -1.208 / -3.728 +0.014 +3.831

ECON [74] 24.828 / 26.802 0.797 30.894
ECON-123 +0.646 / +1.115 -0.024 -1.273
ECON+BH +0.001 / +0.797 -0.003 -0.175

PIFuHD [61] 21.065 / 22.278 0.804 39.076
PIFuHD-123 +1.433 / +2.477 -0.034 -3.139
PIFuHD+BH +0.418 / -0.589 -0.005 +0.066

Table 5. Generative plugins for 3D reconstruction. We extend
the baseline methods with Zero-1-to-3 (denoted as -123) and our
hallucination module (denoted as +BH). Our method improves
their perceptual qualities without affecting their overall perfor-
mance. Red and blue indicate improvements and decreases re-
spectively.

8.3. More Benchmark Evaluation
We present detailed descriptions of our benchmark evalua-
tion protocol. For a fair comparison, we generated meshes
from all baselines using marching cubes with a resolution
of 256. To accurately compare the reconstructed meshes
with ground-truth meshes, we utilize the Iterative Closest
Point (ICP) algorithm [5] to register reconstructed meshes.
This step is crucial for aligning the meshes with ground
truth, thereby eliminating issues of scale and depth mis-
alignment of different methods. When calculating the met-
rics, we sampled 100K points per mesh, and the threshold
for computing the f-scores is set to 1cm. To evaluate tex-
ture reconstruction, we render front and back-view images
of the generated textured meshes using aitviewer [32]. Dur-
ing our evaluations, we noticed that some baselines, specif-
ically PHORHUM [4] and 2K2K [18], cannot handle non-
front-facing images. Therefore, in the manuscript (Tab. 1)
all the results used front-facing images. To provide a more
comprehensive comparison and an evaluation aligned with
real-world use cases, we include results based on images
rendered from multiple view angles in Tab. 6. The CAPE
and CustomHumans datasets contain images from three and
four view angles respectively. Despite marginal degrada-
tion, the results indicate that our method consistently out-
performs other methods in single-view 3D reconstructing.

8.4. Robustness to View Angles
Inspired by insights from the previous subsection, we
are interested in assessing the robustness of our method
against variations in image view angles. To this end,
we rendered images by rotating the texture scans by
{0, 15, 30, 45, 60, 75, 90} degrees and subsequently com-
puted their perspective 3D reconstruction metrics. This
analysis is detailed in Tab. 7. We found that our pipeline
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Method Pred-to-Scan /
Scan-to-Pred (mm)# NC" f-Score" Pred-to-Scan /

Scan-to-Pred (mm)# NC" f-Score"

PIFu [60] 26.359 / 40.642 0.755 29.283 24.765 / 34.007 0.780 31.911
PIFuHD [61] 25.644 / 38.050 0.755 32.157 23.004 / 30.039 0.785 36.311
FOF [15] 21.671 / 37.246 0.778 33.971 21.995 / 31.076 0.789 34.403
PaMIR [79] 24.737 / 33.049 0.782 31.621 23.471 / 30.023 0.797 34.404

ICON [73] 27.897 / 36.907 0.757 25.898 25.957 / 37.857 0.763 26.857
ECON [74] 27.333 / 34.364 0.765 26.960 27.447 / 38.858 0.757 27.075
SiTH (Ours) 21.324 / 29.050 0.791 34.199 20.513 / 28.923 0.804 35.824

Table 6. Single-view human reconstruction from multiple viewpoints. We report Chamfer distance, normal consistency (NC), and
f-score between ground truth and predicted meshes. Note that gray color denotes models trained on more commercial 3D human scans
while the others are trained on with the public THuman2.0 dataset.

Angle Pred-to-Scan /
Scan-to-Pred (mm)# NC" f-Score" � CD � NC � f-Score

0� 16.880 / 20.314 0.8423 39.850 - - -
15� 16.428 / 20.177 0.8428 39.971 -0.452 / -0.137 +0.0005 +0.121
30� 17.806 / 22.802 0.8305 37.154 +0.926 / +2.488 -0.0118 -2.696
45� 18.585 / 23.308 0.8243 35.652 +1.705 / +2.994 -0.0180 -4.198
60� 20.404 / 29.519 0.8052 33.675 +3.524 / +9.205 -0.0371 -6.175
75� 22.111 / 33.309 0.7960 32.334 +5.231 / +12.995 -0.0463 -7.516
90� 23.752 / 38.338 0.7816 30.011 +6.872 / +18.024 -0.0607 -9.839

Table 7. Robustness of 3D reconstruction with respect to view angles. We tested our pipeline using the images and textured scans that
were rotated by varying view angles. Note that we use GT back-view images and only analyze the robustness of the mesh reconstruction
module. The results from these tests demonstrate that our method maintains robustness within a view angle change of up to 45 degrees.

maintains robustness with viewpoint perturbations up to 45
degrees. However, a significant increase in the Chamfer dis-
tance was observed when the angle increased from 45 to 60
degrees. This difference could stem from potential failures
in pose estimation or the underlying assumption that human
bodies can be reconstructed from only front and back-view
images, which may not hold true at wider angles. These ob-
servations provide a strong motivation for future research
focused on enhancing the robustness of image reconstruc-
tion across varying view angles

8.5. Verification of Design Choices
Image conditioning strategies. We analyzed different
strategies to incorporate image-conditioning in the diffu-
sion U-Net. Fig. 14 depicts the effects of using the CLIP
image encoder and the VAE image encoder. The results
show that simply relying on the CLIP image encoder is
not sufficient to provide accurate image conditioning. The
clothing appearances cannot be accurately represented in
the shared latent space of texts and images. On the other
hand, the VAE encoder alone might also lose semantic in-
formation, such as male and female, for back-view halluci-
nation. The hairstyles in the back are not consistent with
the front-view image. Finally, the combination of both im-

age features (CLIP+VAE) complements missing informa-
tion of each image feature, therefore achieving more plau-
sible results for back-view hallucination.

ControlNet inputs. We conducted controlled experi-
ments to validate the efficacy of using SMPL-X UV maps
and silhouette masks as conditioning inputs for our diffu-
sion model. Fig. 15 illustrates the impact of employing dif-
ferent input images on the ControlNet models. Our results
show that omitting the silhouette masks (w/o Mask) results
in output images that lack consistent body shapes with the
input images, especially in areas with garments like skirts.
Conversely, while relying solely on silhouette masks (w/o
UV Map) ensures shape consistency, the model struggles
to differentiate between front and back views. This is par-
ticularly evident in the incorrect appearances on the head
and face. Notably, the integration of both the silhouette and
SMPL-X UV maps leads to more stable and accurate back-
view hallucinations, thereby validating our approach.

Parameters finetuning. We conducted an analysis of the
training strategy for our image-conditioned diffusion model
by designing and comparing several training strategies.
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Figure 14. Analysis of different conditioning strategies. We visualize the images generated by using different image features for
conditioning. We show that combining both CLIP and VAE image features achieves more consistent and desirable results in back-view
hallucination. Note that the four different images are sampled from different random seeds. Best viewed in color and zoom in.
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Figure 15. Analysis of different ControlNet conditions. We visualize the images generated under various input conditions to the
ControlNet model. We show that the integration of both UV maps and silhouette masks is crucial for generating spatially aligned back-
view images. Note that the four different images are sampled from different random seeds. Best viewed in color and zoom in.

• We explored training from scratch, where both the diffu-
sion U-Net and the ControlNet model are randomly ini-
tialized. This method is labeled as From Scratch.

• We initialized the model from a pretrained diffusion U-
Net, but kept its parameters frozen during training. In
this variant, only the ControlNet model’s parameters are
optimized, and it is denoted as CtrlNet Only.

• We developed a strategy that unfreezes all parameters in
both the pretrained diffusion U-Net and the ControlNet
model for training, referred to as CtrlNet+U-Net Full.

• Finally, we presented the training strategy used in our
method, i.e., training only the cross-attention layers in
the pretrained diffusion U-Net along with the ControlNet
model (denoted as CtrlNet+CrossAtt.).
The results of these training strategies are depicted

in Fig. 16, which shows that training a large diffusion model
from scratch using only 500 3D scans is impractical. While
leveraging large-scale pretraining can mitigate this issue,
the CtrlNet Only training strategy fails to generate consis-
tent appearances from front-view images. Alternatively,
when we unfroze the parameters in the diffusion U-Net,
the model showed improvement in generating images more
aligned with the input conditional image. However, this ap-
proach led to a limitation where the model consistently pro-
duced identical output images, thus compromising its gen-

Method Pred-to-Scan /
Scan-to-Pred (mm)# NC" f-Score"

W/o Normal 16.825 / 19.802 0.837 40.593
W/ Normal 18.709 / 20.451 0.826 37.029

Table 8. Effectiveness of normal guidance. We verify the
effectiveness of incorporating normal guidance in our pipeline.
While we observed that normal guidance marginally reduces per-
formance in terms of 3D metrics, it significantly enhances the
overall perceptual quality.

erative capability, particularly in varying clothing wrinkles
and hairstyles. In contrast, our training strategy successfully
generates perceptually consistent back-view images while
preserving the model’s generative capabilities. This strategy
effectively handles the stochastic nature of clothing details
and hairstyles for back-view hallucination.

Importance of normal guidance. We validated the use
of normal guidance in our mesh reconstruction module. In
this experiment, we created a variant where normal images
were replaced with RGB images during local feature query-
ing. The 3D reconstruction results, as shown in Tab. 8, sur-
prisingly indicate that this variant surpasses our model with
normal guidance across all metrics. However, Fig. 17 il-
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Figure 16. Analysis of different network training strategies. We visualize the images generated by employing different network training
strategies. We show that our method produces images with consistent appearances and is able to generate diverse hairstyles and clothing
details. Note that the four different images are sampled from different random seeds. Best viewed in color and zoom in.
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Figure 17. Visualization of the effectiveness of normal guid-
ance. The use of normal guidance demonstrates its superiority in
capturing geometric details of clothing and is more robust in re-
constructing a challenging coat.

lustrates the tangible benefits of incorporating normal guid-
ance. Without normal guidance, the mesh surface becomes
noticeably smoother, and the model struggles to accurately
reconstruct challenging clothing, such as coats. This obser-
vation aligns with our findings in Sec. 4.4 and Sec. 8.2, in-
dicating that conventional 3D metrics may not fully capture
perceptual quality. Hence, this trade-off highlights the im-
portance of the normal predictor and guidance in achieving
high-fidelity 3D human reconstruction.

Input Ours TeCH

Texture-Geometry
Aligned

Texture-Geometry
Not Aligned

Figure 18. Comparison with SDS optimization-based method.
Compared to the optimization-based method (TeCH), our method
reconstructs consistent facial details and well-aligned mesh texture
and geometry. Note that TeCH requires 6 hours to optimize both
texture and geometry.

8.6. Additional Results
We present more qualitative results in Fig. 20, Fig. 21,
Fig. 22, and Fig. 23, demonstrating our method’s robustness
in handling unseen images sourced from the Internet.

9. Discussion
9.1. Data-driven v.s. Optimization
Numerous concurrent works, such as TECH [24] and
Human-SGD [3], propose creating 3D textured humans
from single images using optimization-based approaches.
These methods primarily build upon pretrained diffusion
models and a Score Distillation Sampling loss, with sev-
eral adaptations. In our discussion, we highlight the unique
aspects of our method in comparison. Our method uniquely
integrates a diffusion model into the existing data-driven 3D
reconstruction workflow. This integration allows us to effi-
ciently exploit 3D supervision to learn a generalized model
for single-view reconstruction, thus avoiding the need for
costly and time-consuming per-subject optimization. Con-
sequently, our pipeline can generate high-quality textured
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Figure 19. Limitations. Top: The hallucination model struggles
with complex textures like stripes or plaid. Middle: Side-view
appearances are not accurately recovered by mesh reconstruction.
Bottom: The mesh reconstruction model is unable to effectively
handle self-occluded regions.

meshes in under two minutes. Moreover, we observed that
the existing optimization-based methods failed to generate
3D meshes having consistent and aligned texture and ge-
ometry (Fig. 18). This is due to their requirements of op-
timizing texture and geometry with separate optimization
processes. Instead, our results are more similar to the input
images and retain the consistency of both texture and ge-
ometry. Lastly, our two-stage pipeline empowers the 3D
human creation process with controllability. As demon-
strated in Sec. 8.1, our hallucination model handles gen-
erative stochasticity and is able to create various plausible
back-view images. This feature provides users with the
flexibility to choose back-view appearances based on their
preferences, instead of solely relying on a random optimiza-
tion process. However, as previously discussed, our method
does have certain limitations. We believe that the further
cross-pollination of both methods offers a promising path
for future developments in generative 3D human creation.

9.2. Limitations

Complex clothing textures. We observed a challenge
with the image-conditioned diffusion model in accurately
generating complex clothing textures, such as stripes or
plaid (Fig. 19 Top). This limitation stems from the image
feature resolution using a pretrained VAE image encoder

for feature extraction and reconstruction. The model gen-
erates output images at a resolution of 512 ⇥ 512, yet the
diffusion U-Net is limited to processing features of only
64 ⇥ 64. Consequently, finer texture details may be lost
in the diffusion process. This issue motivates the need for
future development of pixel-perfect image-conditioning ap-
proaches, which could more accurately capture details in
high-resolution images.

Side-view appearances. Our method follows the estab-
lished practice in single-view human reconstruction, using
a ”sandwich-like” approach that relies on front and back
information. This technique reduces the need for exten-
sive multi-view images for 3D reconstruction. However, as
shown in Fig. 19 Middle, a limitation of this method is the
loss of detail in side views. A promising direction for fu-
ture enhancements would be integrating our pipeline with
optimization-based methods for a more detailed 3D human
creation. Our pipeline currently provides a robust initial-
ization by providing 3D human models with geometric and
appearance details. By leveraging this initialization, the
lengthy optimization process could be accelerated, making
it more effective for creating detailed 3D humans.

Self-occlusion. Our mesh reconstruction module strug-
gles to reconstruct appearance details in self-occluded re-
gions, as illustrated in Fig. 19 Bottom. This challenge arises
because essential information in these areas is not captured
by either front or back-view images, and thus the mesh re-
construction module fails to infer these details. One po-
tential solution is using an optimization process for refine-
ment, as previously suggested. Another promising direction
for future work could be developing a hallucination model
capable of generating multi-view images with accurate 3D
consistency, which would help reduce the self-occluded re-
gions in mesh reconstruction.
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Figure 20. Qualitative comparison of mesh geometry with Internet images. Our method generates realistic clothing wrinkles in the
back regions. Best viewed in color and zoom in.

Input Image PiFu PHORHUM SiTH (Ours)PaMIR

Figure 21. Qualitative comparison of mesh texture with Internet images. Our method generates realistic texture in and back regions.
Best viewed in color and zoom in.



Figure 22. Examples of reconstruction from Internet images. Our method generates realistic clothing wrinkles in the back regions. Best
viewed in color and zoom in.



Figure 23. Examples of reconstruction from Internet images. Our method generates realistic clothing wrinkles in the back regions. Best
viewed in color and zoom in.


