
ViewDiff: 3D-Consistent Image Generation with Text-to-Image Models

Supplementary Material

A. Supplemental Video
Please watch our attached video 1 for a comprehensive evalu-
ation of the proposed method. We include rendered videos of
multiple generated objects from novel trajectories at differ-
ent camera elevations (showcasing unconditional generation
as in Fig. 4). We also show animated results for single-image
reconstruction (Fig. 6) and sample diversity (Fig. 7).

B. Training Details
B.1. Data Preprocessing

We train our method on the large-scale CO3Dv2 [33] dataset,
which consists of posed multi-view images of real-world
objects. Concretely, we choose the categories Teddybear,
Hydrant, Apple, and Donut. Per category, we train on
500–1000 objects, with 200 images at resolution 256×256
for each object. We generate text captions with the BLIP-2
model [21] and sample one of 5 proposals per object during
each training iteration. With probability p1=0.5 we select
the training images randomly per object and with probability
p2=0.5 we select consecutive images from the captured
trajectory that goes around the object. We randomly crop
the images to a resolution of 256×256 and normalize the
camera poses such that the captured object lies in an axis-
aligned unit cube. Specifically, we follow Szymanowicz et al.
[42] and calculate a rotation transformation such that all
cameras align on an axis-aligned plane. Then, we translate
and scale the camera positions, such that their bounding box
is contained in the unit cube.

B.2. Prior Preservation Loss

Inspired by Ruiz et al. [34], we create a prior preservation
dataset of 300 images and random poses per category with
the pretrained text-to-image model. We use it during training
to maintain the image generation prior. This has been shown
to be successful when fine-tuning a large 2D diffusion model
on smaller-scale data [34]. For each of the 300 images we
randomly sample a text description from the training set
of CO3Dv2 [33]. We then generate an image with the pre-
trained text-to-image model given that text description as
input. During each training iteration we first calculate the
diffusion objective (Eq. 3) on the N=5 multi-view images
sampled from the dataset and obtain Ld. Then, we sample
one image of the prior preservation dataset and apply noise
to it (Eq. 2). Additionally, we sample a camera (pose and
intrinsics) that lies within the distribution of cameras for
each object category. We then similarly calculate the loss

1https://youtu.be/SdjoCqHzMMk

(Eq. 3) on the prediction of our model and obtain Lp. Since
we only sample a single image instead of multiple, this does
not train the diffusion model on 3D-consistency. Instead,
it trains the model to maintain its image generation prior.
Concretely, the cross-frame-attention layers are treated again
as self-attention layers and the projection layers perform
unprojection and rendering normally, but only from a single
image as input. In practice, we scale the prior preservation
loss with factor 0.1 and add it to the dataset loss to obtain
the final loss: L=Ld + 0.1Lp.

C. Evaluation Details

C.1. Autoregressive Generation

We showcase unconditional generation of our method in
Sec. 4.1. To obtain these results, we employ our autoregres-
sive generation scheme (Sec. 3.3). Concretely, we sample
an (unobserved) image caption from the test set for the first
batch and generate N=10 images with a guidance scale [13]
of λcfg=7.5. Then we set λcfg=0 for subsequent batches
and create a total of 100 images per object. We found that
the results are most consistent, if the first batch generates
N images in a 360° rotation around the object. This way,
we globally define the object shape and texture in a single
denoising forward pass. All subsequent batches are condi-
tioned on all N images of the first batch. To render a smooth
trajectory, we sample the camera poses in other batches in a
sequence. That is, the next N images are close to each other
with only a small rotation between them. We visualize this
principle in our supplemental video.

C.2. Metric Computation

We give additional details on how we computed the metrics
as shown in Tabs. 1 to 3. To ensure comparability, we evalu-
ate all metrics on images without backgrounds as not every
baseline models them.

FID/KID. We report FID [12] and KID [2] as common
metrics for 2D/3D generation. We calculate these metrics
to compare unconditional image generation against Holo-
Fusion [18] and ViewsetDiffusion [42]. This quantifies the
similarity of the generated images to the dataset and thereby
provides insight about their quality (e.g., texture details and
sharpness) and diversity (e.g., different shapes and colors).
Following the baselines [18, 19], we sample 20,000 images
from the CO3Dv2 [33] dataset for each object category. We
remove the background from each object by using the fore-
ground mask probabilities contained in the dataset. Similarly,
we generate 20,000 images with each method and remove the

12

https://youtu.be/SdjoCqHzMMk


different sharpness different lighting

Figure 8. Limitations. Our method generates consistent images at
different camera poses. However, there can be slight inconsistencies
like different sharpness and lighting between images. Since our
model is fine-tuned on a real-world dataset consisting of view-
dependent effects (e.g., exposure changes), our framework learns
to generate such variations across different viewpoints.

background from our generated images with CarveKit [36].
For our method, we set the text prompt to an empty string
during the generation to facilitate complete unconditional
generation.

PSNR/SSIM/LPIPS. We measure the multi-view consis-
tency of generated images with peak signal-to-noise ratio
(PSNR), structural similarity index (SSIM), and LPIPS [60].
We calculate these metrics to compare single-image recon-
struction against ViewsetDiffusion [42] and DFM [46]. We
resize all images to the resolution 256×256 to obtain com-
parable numbers. First, we obtain all objects that were not
used during training for every method (hereby obtaining a
unified test set across all methods). Then, we randomly sam-
ple 20 posed image pairs from each object. We use the first
image/pose as input and predict the novel view at the second
pose. We then calculate the metrics as the similarity of the
prediction to the ground-truth second image. We remove the
background from the prediction and ground-truth images by
obtaining the foreground mask with CarveKit [36] from the
prediction image. We use the same mask to remove back-
ground from both images. This way, we calculate the metrics
only on similarly masked images. If the method puts the
predicted object at a wrong position, we would thus quantify
this as a penalty by comparing the segmented object to the
background of the ground-truth image at that location.

D. Limitations
Our method generates 3D-consistent, high-quality images of
diverse objects according to text descriptions or input images.
Nevertheless, there are several limitations. Our method some-
times produces images with slight inconsistency, as shown
in Fig. 8. Since the model is fine-tuned on a real-world
dataset consisting of view-dependent effects (e.g., exposure

Conv_3x3 (C, C)

ReLU

Conv_3x3 (C, C’)

ReLU

Conv_1x1 (C’, C’)

in_features (NxCxI)

out_features (NxC’xI)

Conv_1x1 (C’, C’)

ReLU

Conv_1x1 (C’, C)

ReLU

Conv_1x1 (C, C)

in_features (NxC’xI)

out_features (NxCxI)

CompressNet
ScaleNet &
ExpandNet

Figure 9. Architecture of projection layer components. The
projection layer contains the components CompressNet, ScaleNet
(green), and ExpandNet. We implement these networks as small
CNN networks.

GroupNorm (16, C’)

SiLU

Conv_3x3 (C’, C’)

Linear (T, C’)

in_features (C’xG) time_embedding (T)

GroupNorm (16, C’)

SiLU

Conv_3x3 (C’, C’)

out_features (C’xG)

ResNet block of the 3D CNN

Figure 10. Architecture of projection layer components. The
projection layer contains the component 3D CNN. We implement
this networks as a series of 5 3D ResNet [11] blocks with timestep
embeddings.

changes), our framework learns to generate such variations
across different viewpoints. This can lead to flickering arti-
facts when rendering a smooth video from a generated set
of images (e.g., see the supplemental video). A potential
solution is to (i) filter blurry frames from the dataset, and (ii)
add lighting-condition through a ControlNet [59].

E. Projection Layer Architecture

We add a projection layer into the U-Net architecture of pre-
trained text-to-image models (see Fig. 3 and Sec. 3.2). The
idea of this layer is to create 3D-consistent features that are

13



voxel features 
(NxC’xG)

ray dir (Nx3xG),
depth (Nx1xG)

Conv_3x3 (4, C’ / 2)

ELU

Conv_3x3 (C’ / 2, C’)

ELU

time embedding 
(NxT)

Linear (T, T / 2)

Linear (T / 2, C’)

ELU

(NxC’xG) mean (C’xG)var (C’xG)

C

(Nx3C’xG)

MLP
(3C’, 2C’)
(2C’, C’)

(NxC’xG)

MLP
(C’, C’)
(C’, 1)

Sigmoid()

MLP
(C’, C’)
(C’, C’)

MLP
(C’, C’)
(C’, 1)

Sigmoid()

(NxC’xG)

(Nx1xG) (Nx1xG)

mean (C’xG) var (C’xG)

weighted pooling

Conv_3x3 (2C’+1,C’)

ELU

aggregated voxel 
features (C’xG)

ELU

C concatenation

element-wise addition

element-wise multiplication

mean (1xG)

Aggregator MLP

Figure 11. Architecture of projection layer components. The projection layer contains the component Aggregator MLP. First, we combine
per-view voxel grids with their ray-direction/depth encodings (blue) and the temporal embedding (green). Inspired by IBRNet [51], the
MLPs (pink) then predict per-view weights followed by a weighted feature average. Finally, we combine the per-voxel weights with the
mean and variance grids (yellow) to obtain the aggregated feature grid.

then further processed by the next U-Net layers (e.g. ResNet
blocks). Concretely, we create a 3D representation from all
input features in form of a voxel grid, that is defined inside
of the axis-aligned unit cube. We set the 3D feature dimen-
sion as C ′ = 16 and define the base resolution of the voxel
grid as 128×128×128. Throughout the U-Net, we apply
the same up/downsampling as for the 2D features, i.e., the
resolution decreases to 8×8×8 in the bottleneck layer. The
projection layer consists of multiple network components.
We show detailed network architectures of these components
in Figs. 9 to 11.

E.1. CompressNet and ExpandNet

We apply the 3D layers on features that are defined in a
unified dimensionality of C ′=16. Since our 3D layers act
on dense voxel grids this helps to lower the memory require-
ments. To convert to/from this compressed feature space, we
employ small CNNs, as depicted in Fig. 9. In these schemat-
ics, we define N as the number of images in a batch, C as
the uncompressed feature dimension and I as the spatial
dimension of the features.

E.2. Aggregator MLP

After creating per-view voxel grids via raymarching (see
Sec. 3.2), we combine N voxel grids into one voxel grid that
represents the features for all viewpoints. To this end, we
employ a series of networks, as depicted in Fig. 11. In these
schematics, we define N as the number of images in a batch,
C ′ as the compressed feature dimension, T as the dimension
of the timestep embedding, G as the 3D voxel grid resolution,
and I as the spatial dimension of the features. The MLPs are
defined as a sequence of linear layers of specified input and
output dimensionality with ELU activations in between.

First, we concatenate the voxel features with an encod-
ing of the ray-direction and depth that was used to project
the image features into each voxel. We also concatenate the
timestep embedding to each voxel. This allows to combine
per-view voxel grids of different timesteps (e.g., as proposed
in image conditional generation in Sec. 3.3). It is also use-
ful to inform the subsequent networks about the denoising
timestep, which allows to perform the aggregation differ-
ently throughout the denoising process. Inspired by IBRNet
[51], a set of MLPs then predict per-view weights followed
by a weighted feature average. We perform this averaging
operation elementwise: since all voxel grids are defined in

14



the same unit cube, we can combine the same voxel across
all views. Finally, we combine the per-voxel weights with
the mean and variance grids to obtain the final aggregated
feature grid.

E.3. 3D CNN

After aggregating the per-view voxel grids into a joint grid,
we further refine that grid. The goal of this network is to add
additional details to the feature representation such as the
global orientation of the shape. To achieve this, we employ a
series of 5 3D ResNet [11] blocks with timestep embeddings,
as depicted in Fig. 10. In these schematics, we define C ′ as
the compressed feature dimension, T as the dimension of the
timestep embedding, and G as the 3D voxel grid resolution.

E.4. Volume Renderer and ScaleNet

After we obtain a refined 3D feature representation in form
of the voxel grid, we render that grid back into per-view
image features (see Fig. 3). Concretely, we employ a vol-
ume renderer similar to NeRF [26] and implement it as a
grid-based renderer similar to DVGO [40]. This allows to
render features in an efficient way that is not a bottleneck
for the forward pass of the network. In contrast to NeRF,
we render down features instead of rgb colors. Concretely,
we sample 128 points along a ray and for each point we
trilinearly interpolate the voxel grid features to obtain a fea-
ture vector f ∈ RC′

. Then, we employ a small 3-layer MLP
that transforms f into the density d ∈ R and a sampled
feature s ∈ RC′

. Using alpha-compositing, we accumulate
all pairs (d0, s0), ..., (d127, s127) along a ray into a final ren-
dered feature r ∈ RC′

. We dedicate half of the voxel grid to
foreground and half to background and apply the background
model from MERF [32] during ray-marching.

We found it is necessary to add a scale function after the
volume rendering output. The volume renderer typically uses
a sigmoid activation function as the final layer during ray-
marching [26]. However, the input features are defined in
an arbitrary floating-point range. To convert r back into the
same range, we non-linearly scale the features with 1×1 con-
volutions and ReLU activations. We depict the architecture
of this ScaleNet as the green layers in Fig. 9.

F. Additional Results
F.1. Comparison To Additional Baselines

We compare against additional text-to-3D baselines that
also utilize a pretrained text-to-image model in Fig. 12. We
choose ProlificDreamer [52] as representative of score distil-
lation [29] methods. Rendered images are less photorealistic
since the optimization may create noisy surroundings and
over-saturated textures. Similar to us, Zero123-XL [24] and
SyncDreamer [25] circumvent this problem by generating
3D-consistent images directly. However, they finetune on a

Input Image Zero123-XL [24] SyncDreamer [25] Ours
teddy sitting on a wooden box donut on top of a white plate

ProlificDreamer [52] Ours ProlificDreamer [52] Ours

Figure 12. Comparison to other text-to-3D baselines from image-
(top) and text-input (bottom). Our method produces images with
higher photorealism and authentic surroundings.

Table 4. Comparison of consistency (mid) and photorealism
(FID). Our method shows similar 3D-consistency as baselines,
while producing more photorealistic images.

Method Ewarp ↓ #Points↑ PSNR↑ FID↓
DFM [46] 0.0034 17,470 32.32 —
VD [42] 0.0021 — — —
HF [18] 0.0031 — — —
SyncDreamer [25] 0.0042 4,126 33.81 135.78
Zero123-XL (SDS) [24] 0.0039 — — 126.83
Ours 0.0036 18,358 33.65 85.08

large synthetic dataset [7] instead of real-world images. As
a result, their images have synthetic textures and lighting
effects and no backgrounds. We quantify this in Tab. 4 with
the FID between sets of generated images (conditioned on
an input view), and real images of the same object (with-
out backgrounds). Our method has better scores since the
generated images are more photorealistic.

We calculate temporal stability (Ewarp) of video render-
ings with optical flow warping following [20]. Also, we mea-
sure the consistency of generated images for methods that
do not directly produce a 3D representation. Concretely, we
report the number of point correspondences following [25]
and the PSNR between NeRF [26] re-renderings and input
images. Table 4 shows that our method is on-par with base-
lines in terms of 3D consistency, while generating higher
quality images.

F.2. Unconditional Generation

We generate images in a similar fashion as in Sec. 4.1. Con-
cretely, we sample an (unobserved) image caption from the
test set for the first batch and generate N=10 images with
a guidance scale [13] of λcfg=7.5. Then we set λcfg=0
for subsequent batches and create a total of 100 images per
object. We show additional results in Figs. 13 to 16.

15



a teddy bear sitting on a colorful rug

a stuffed panda bear with a heart on its chest

a stuffed animal sitting on a tile floor

a black and white teddybear with blue feet

a teddy bear laying on a bed

a stuffed animal sitting on a chair

a teddy bear sitting on the ground in the dark

a stuffed bear wearing a red hat and a cloak

Figure 13. Additional examples of our method. Given a text prompt as input, we generate a smooth trajectory around an object with our
autoregressive generation scheme (Sec. 3.3). Please see the supplemental video for animations of the generated samples.

16



a red and white fire hydrant on a brick floor

a yellow and green fire hydrant sitting on the ground

a yellow fire hydrant sitting on the sidewalk

a red fire hydrant in the snow

a fire hydrant on the sidewalk

a red and blue fire hydrant

a blue and white fire hydrant sitting in the grass

a green fire hydrant with a tag on it

Figure 14. Additional examples of our method. Given a text prompt as input, we generate a smooth trajectory around an object with our
autoregressive generation scheme (Sec. 3.3). Please see the supplemental video for animations of the generated samples.

17



a glazed donut sitting on a marble counter

a donut on a clear plate

a chocolate donut with sprinkles on it

a donut on a plate with a hole in it

a large donut on a plate on a table

a yellow plate with a donut on it

a white plate with a donut on it

a donut sitting on a cloth

Figure 15. Additional examples of our method. Given a text prompt as input, we generate a smooth trajectory around an object with our
autoregressive generation scheme (Sec. 3.3). Please see the supplemental video for animations of the generated samples.

18



a red apple on a white counter top

a green apple sitting on a counter

a red and yellow apple

a red and yellow apple

a single apple on a table cloth with a floral pattern

a red and yellow apple on a wooden floor

a red apple sitting on a black leather couch

a red apple on a blue and white patterned table cloth

Figure 16. Additional examples of our method. Given a text prompt as input, we generate a smooth trajectory around an object with our
autoregressive generation scheme (Sec. 3.3). Please see the supplemental video for animations of the generated samples.

19



G. Optimizing a NeRF/NeuS
Our method is capable of directly rendering images from
novel camera positions in an autoregressive generation
scheme (see Sec. 3.3). This allows to render smooth trajecto-
ries around the same 3D object at arbitrary camera positions.
Depending on the use case, it might be desirable to obtain an
explicit 3D representation of a generated 3D object (instead
of using our method to autoregressively render new images).
We demonstrate that our generated images can be used di-
rectly to optimize a NeRF [26] or NeuS [50]. Concretely, we
optimize a NeRF with the Instant-NGP [27] implementation
from our generated images for 10K iterations (2 minutes).
Also, we extract a mesh by optimizing a NeuS with the neus-
facto implementation from SDFStudio [43, 58] for 20K it-
erations (15 minutes). First, we remove the background of
our generated images by applying Carvekit [36] and then
start the optimization with these images. We show results in
Figs. 17 to 19.

20



Figure 17. NeRF [26] optimization from our generated images. Left: given a text prompt as input, we generate a smooth trajectory around
an object with our autoregressive generation scheme (Sec. 3.3). In total, we generate 100 images at different camera positions. Right: we
create a NeRF using Instant-NGP [27] from the generated images. We show the camera positions of the generated images on top of the
optimized radiance field.

21



Figure 18. NeRF [26] optimization from our generated images. Left: given a text prompt as input, we generate a smooth trajectory around
an object with our autoregressive generation scheme (Sec. 3.3). In total, we generate 100 images at different camera positions. Right: we
create a NeRF using Instant-NGP [27] from the generated images. We show the camera positions of the generated images on top of the
optimized radiance field.

Figure 19. Mesh extraction from our generated images. Given a text prompt as input, we generate a smooth trajectory around an object
with our autoregressive generation scheme (Sec. 3.3). In total, we generate 100 images at different camera positions and mask-out the
background with Carvekit [36]. We then optimize a NeuS [50] and extract the mesh from it (last 4 images per row).

22


	. Supplemental Video
	. Training Details
	. Data Preprocessing
	. Prior Preservation Loss

	. Evaluation Details
	. Autoregressive Generation
	. Metric Computation

	. Limitations
	. Projection Layer Architecture
	. CompressNet and ExpandNet
	. Aggregator MLP
	. 3D CNN
	. Volume Renderer and ScaleNet

	. Additional Results
	. Comparison To Additional Baselines
	. Unconditional Generation

	. Optimizing a NeRF/NeuS

