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Appendix

1. Details of Training Configurations
We report the detailed training settings of CogAgent in Ta-
ble 7, and model configurations of CogAgent in Table 8.

Configurations Pre-train Multi-task

Total steps 60, 000 10, 000

Warmup steps 500 500

Batch size 4, 608 1, 024

Learning rate 2⇥ 10�5

Learning rate decay Cosine

Weight decay 0.05
Dropout ratio 0.1

Adam ✏ 1⇥ 10�5

Adam � (0.9, 0.95)

Table 7. Training settings of pre-training and multi-task fine-
tuning.

VLM decoder

Architecture Vicuna-1.5-7B + visual expert
Layers 32

Hidden size 4, 096

Attention heads 32

Low-resolution visual encoder

Architecture EVA2-CLIP-E
Input resolution 224⇥ 224

Patch size 14⇥ 14

High-resolution visual encoder

Visual encoder EVA2-CLIP-L
Input resolution 1120⇥ 1120

Patch size 14⇥ 14

Cross Attention

Hidden size 1, 024

Attention heads 32

Table 8. Model configurations of CogAgent.

2. Details of Evaluation Datasets
In this section, we will provide a detailed overview of the
datasets used in our evaluations .

2.1. General VQA
• VQAv2 [1]. VQAv2 is designed for visual question an-

swering with natural images, covering a wide range of
question types including yes/no, numerical counting,
and more open-ended inquiries. The dataset comprised
of a collection exceeding 200,000 images, paired with
more than 1.1 million questions. Each question is
paired with 10 answers annotated by different anno-
tators.

• OK-VQA [23]. OK-VQA (Outside Knowledge Visual
Question Answering) dataset is constructed to evaluate
visual question-answering skills that require external
knowledge. Models need to combine image content
and common sense to answer questions. The dataset
includes 14,055 open-ended questions, each accompa-
nied by 5 ground truth answers.

• MM-Vet [41]. MM-Vet is designed to evaluate the
overall capability of generalist visual language models
in a zero-shot manner. It integrates 6 core VL capa-
bilities to solve complex tasks (including recognition,
OCR, knowledge, language generation, spatial aware-
ness, and math), and explores 16 distinct integrations
resulting from the combination of these capabilities.
As for evaluation metrics, it utilizes a language model-
based evaluator tailored for open-ended responses.

• POPE [19]. POPE (Polling-based Object Probing
Evaluation) is a dataset constructed to assess the object
hallucination problem in large visual language mod-
els. It employs a polling-based object probing method,
transforming hallucination assessment into a binary
classification challenge. This is achieved by prompting
large vision-language models (LVLMs) with straight-
forward Yes-or-No queries regarding the objects in
question (for example, ”Is there a car in the image?”).
Our evaluation is conducted under the dataset’s most
challenging setting: the adversarial setting.

2.2. Text-rich VQA
• OCR-VQA [27]. OCR-VQA dataset comprises

207,572 images of book covers, paired with more than
1 million question-answer pairs. The questions in-
quire about book information including title, edition,
year, author, and genre of the book, which requires text
recognition and comprehension abilities.

• TextVQA [34]. TextVQA is a benchmark of visual
reasoning based on text in images. Models need to



Task Dataset Description Split Metrics

General VQA

VQAv2 VQA on natural images. test-dev VQA Score(")
OK-VQA VQA on natural images requiring outside knowledge. val VQA Score (")
MM-Vet Conversational style VQA on integrated capabilities. test GPT-4 score(")
POPE VQA for hallucination assessment. The adversarial setting is used. test F1 score(")

Text-rich VQA

OCR-VQA VQA on images of book covers. test EM (")
TextVQA VQA on natural images containing text. test VQA Score (")
ST-VQA VQA on natural images requiring textual understanding. test ANLS (")
ChartQA VQA about charts with visual and logical reasoning. test VQA Score (")
InfoVQA VQA on infographics. test ANLS (")
DocVQA VQA on document images. test ANLS (")

GUI Agent Mind2Web Web behavior prediction given snapshots and historical actions. test step SR (")
AITW Android behavior prediction given snapshots and historical actions. test Matching Score (")

Table 9. Summary of the evaluation benchmarks.

incorporate the textual information in the images and
reason over it to answer TextVQA questions. It com-
prises a total of 28,408 images and 45,336 questions.

• ST-VQA [4]. ST-VQA is designed to emphasize the
significance of exploiting the semantic information
present within images in textual form during the VQA
process. It comprises tasks of diverse difficulties, for
which recognizing the scene text and performing nec-
essary reasoning is required to generate the answer.
The dataset comprises 23,038 images sourced from
multiple public datasets and 31,791 question-answer
pairs.

• ChartQA [24]. ChartQA is a benchmark of question-
answering about logical and visual reasoning on
charts. It consists of 20,882 charts curated from four
different online sources, 9,608 manual written ques-
tions, as well as 23,111 questions automatically gen-
erated with T5 according to human-written chart sum-
maries.

• InfographicVQA(InfoVQA) [26]. The task of In-
foVQA is to answer questions centering on a given in-
fographic image. The answers to most questions can
be extracted from the given documents, while the an-
swers to a small percentage of questions are not extrac-
tive. There are 5K Images collected from the Internet
and 30K manually annotated questions in the dataset.

• DocVQA [25]. DocVQA focuses on question-
answering given a document image. The answer for
questions is often a span of text from the given docu-
ments. There are 12K images and 50K manually an-
notated questions in the datasets.

2.3. GUI Agent
CogAgent is evaluated on two GUI agent datasets,
Mind2Web and Android in the Wild (AITW), correspond-
ing to computer agent and smartphone agent respectively.

• Mind2Web [10]. Mind2Web is designed to develop
and evaluate web agents capable of executing intri-
cate tasks on various websites based on language di-
rections. While existing datasets for web agents com-
monly rely on simulated or overly simplified web data,
Mind2Web utilizes real-world websites and is anno-
tated by human annotators. It gathers data from 137
websites covering 31 domains, and collects over 2,000
open-ended tasks, each accompanied by a crowd-
sourced action sequence.
In mind2web, evaluated agents are asked to accom-
plish a designated task on a chosen website by per-
forming a sequence of actions. Each instance (i.e. a
specific task) in Mind2Web contains a task description,
action sequence, and webpage snapshots. Each action
in the sequence is a (Target element, Operation) pair,
and Operation includes Click, Type (with additional
value), and Select (with additional value). Each action
is paired with the concurrent webpage snapshots in a
variety of formats including raw HTML code, DOM
tree, screenshot, etc. As for CogAgent, we choose
screenshot images as the input representation of web-
sites; as for other language-based agents, HTML is
chosen as the input representation.
Following Deng et al. [10] and Zeng et al. [42], we for-
malize the problem as: first choose the target webpage
element among top-k (k=10 or 50) candidates, then
predict specific operations. The top-k candidates are
provided by the candidate generation model in Deng
et al. [10]. Step success rate (step SR) is reported on 3
out-of-domain test sets (cross-website, cross-domain,



cross-task) as metric. Only predictions with the same
target element and operation as the ground truth are
regarded as correct.

• Android in the Wild (AITW) [31]. AITW is con-
structed to develop and evaluate Android device-
control systems that are capable of understanding and
acting upon human natural language instructions by di-
rectly manipulating the device’s user interface. This
dataset significantly surpasses others in its category in
terms of size, encompassing 715k episodes across 30k
distinct instructions, and covering four Android ver-
sions (v10–13). It also includes eight types of devices,
ranging from Pixel 2 XL to Pixel 6, each with differ-
ent screen resolutions. AITW consists of five subsets:
GoogleApps, Install, WebShopping, General, and Sin-
gle. The subsets have distinct tasks, while are in the
same data format. Each episode (i.e. action sequence)
comprises three components: a goal instruction pro-
vided in natural language, a user action sequence, and
a corresponding screenshots sequence.

As for screenshots, AITW only provides screenshot
images and does not provide tree-based representa-
tions of UI. This is because a large portion of them
in Smartphone applications are of low quality or even
do not exist, and adopting the tree-based representa-
tion would strongly limit agents’ applications. For vi-
sual agents, screenshots are provided to the agents in
image format; for language-model-based agents eval-
uated by Zhan and Zhang [43], the textual representa-
tions of OCR and icons formatted in HTML syntax are
provided. As for actions, AITW considers a variety of
action types including tapping, swiping, typing, going
home, going back, entering, etc. For each action, mod-
els are required to predict the exact action type; for tap,
swipe and type, models are further required to predict
the position, direction, and content to be typed, respec-
tively. The detailed standard for computing matching
scores is provided in Rawles et al. [31].

3. Derivation of Acceleration for High-
Resolution Cross-Module

Suppose that LIlo , LIhi and LT are the lengths of the low-
resolution image, high-resolution image and text sequences.
Let Hcross, Hdec be the number of attention heads in cross-
attention and self-attention, and dcross, ddec be the dimension
of each attention head.

If using our high-resolution cross-module, the computa-
tional complexity of attention is

Timproved = O
�
(LIlo + LT )LIhiHcrossdcross

+ (LIlo + LT )
2
Hdecddec

�
.

(5)

If not utilizing the high-resolution cross-module and
directly substituting low-resolution images with high-
resolution ones, the computational complexity would be

Toriginal = O
�
(LIhi + LT )

2
Hdecddec

�
. (6)

The reduction factor of the computational complexity in
attention, Toriginal/Timproved, equals to
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• Case 1: LIlo , LT ⌧ LIhi .
Given that LIlo is much smaller than LIhi , when LT

also satisfies being much smaller than LIhi , both LIlo
LIhi

and LT
LIhi

become first-order small quantities. If con-
ducting a 0-th order approximation for the complexity
reduction factor, we obtain:
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⇡ LIhi

LIlo + LT

(12)

• Case 2: Our implementation.
In our implementation, dcross = 32, Hcross = 32, and
we inherits ddec = 128, Hdec = 32 from CogVLM-
17B. Both high- and low-resolution encoders patchify
images with 14 ⇥ 14-pixel patches, thus LIhi = 6400,
LIlo = 256. Subsitute the values to Eq. (9), we obtain

Toriginal

Timproved
=
6400 + LT

256 + LT

4(6400 + LT )

6400 + 4(256 + LT )
(13)

>
6400 + LT

256 + LT

(14)

That is to say, our method leads to at least LIhi+LT

LIlo+LT
=

6400+LT
256+LT

⇥ acceleration which is a stringent lower
bound. Taking pre-training as an example, with
LT typically below 512 in earlier stages, our high-
resolution cross-module can get an over 25⇥ reduction
in computational cost.



4. Performance Analysis on AITW

Android in the Wild (AITW) dataset is a large-scale dataset
for Android device agents. Our analysis centers on in-
stances where the CogAgent’s responses diverge from the
annotated ground truth, focusing on these discrepancies.

In our analysis, we conducted a sampling and manual
verification of cases where there was a discrepancy between
the model’s responses and the labeled answers. We sampled
instances and discovered that in 42% of these, the model’s
response actually represented an alternative correct method,
rather than an error. This phenomenon is common due to the
multiplicity of ways to accomplish a function on a smart-
phone. For example, many phones are equipped with both
Google’s app and a Google search bar, and searches can be
conducted using either. During the use of smartphones, hu-
man users may exhibit simultaneous needs for both in-depth
exploration and extensive browsing. For example, when
browsing news, CogAgent might identify relevant results on
the current page and select them immediately, while some
users may prefer to scroll through the entire page first. Fur-
thermore, the data collection for annotations might involve
redundant or overly detailed steps, whereas CogAgent can
directly find the most efficient path. Fig. 4 illustrates these
typical examples of multiple correct answers.

Given the nature of smartphone usage, wherein accom-
plishing a task often involves multiple viable paths, it is ad-
visable for future studies to explore a virtual environment
with an evaluation of the accuracy of task completion fol-
lowing a sequence of actions, aligning more closely with
real-world human usage scenarios.

CogAgent:
tap [[0.512, 0.403]].

User:
Set an alarm for 3pm.

Ground Truth:
tap [[0.285, 0.455]].

CogAgent:
tap [[0.672, 0.784]].

User:
Open a new Chrome incognito tab.

Ground Truth:
tap [[0.528, 0.870]].

CogAgent:
tap [[0.318, 0.246]].

User:
What's the news in Brazil?

Ground Truth:
scroll down.

CogAgent:
tap [[0.434, 0.190]].

User:
What's the price of the Galaxy 
phone on eBay?

Ground Truth:
scroll right.

Figure 4. Instances in the AITW dataset where CogAgent provides
accurate responses that differ from the annotated ground truth.

5. Samples of Pre-train Data
Samples of pre-train data are listed in this section, including
data for text recognition (Fig. 5), visual grounding (Fig. 6),
and webpage-html pairs (Fig. 7).

Figure 5. Samples of pre-train data for text recognition.



Figure 6. Samples of pre-train data for visual grounding. Figure 7. Samples of webpage-html pairs.



6. Details of Fine-Tuning Data
6.1. Human annotation
To enable CogAgent to function as an agent on various apps
and websites, we assembled a team of over ten annotators
to collect and label screenshots. To ensure the quality of
the annotations and prevent overly simplistic, homogenized
content, the annotation process was divided into two phases.

In the first phase, annotators were required to indepen-
dently select from a pool of apps and websites, and capture
screenshots of pages strongly relevant to the main function
of that app/website, with no less than 20 screenshots for
each app/website. Subsequently, for each screenshot, the
annotators would label them according to the following as-
pects:

1. Five buttons. List the names of five clickable buttons
from the screenshots. The types of buttons should be
diverse.

2. Three clickable areas. List three clickable areas from
the screenshots, e.g. text boxes, search boxes, click-
able images, hyperlinks, etc.

3. Two questions extracting information from the im-
age. Ask questions involving the textual information
in the images. For instance, “In what year did the user
in the image register?” .

4. One operation requirement. What function of the
webpage/app would you use in this interface? For ex-
ample, adding the comment: “cool!”. The requirement
shouldn’t be vague such as “adding comment”.

In the second phase, annotators are required to pro-
vide grounding annotation for the questions and operational
methods proposed in the first phase (the aforementioned
parts 3 and 4). For example, for Figure 8, a possible an-
notation would be:

1. Buttons: Back; Search; Subscribed; Home; Library.

2. Clickable areas: Avatar in the middle top; Video pre-
view in the middle bottom; Personal profile.

3. Question 1: Based on the page, how many followers
does this author have?

Answer: According to the personal profile at the top
[[013,568,802,188]], this author has 4.97M followers.

Question 2: Based on the page, how many videos has
this author posted?

Answer: According to the personal profile at the
top [[013,568,802,188]], this author has posted 502
videos.

Figure 8. Samples of human-collected screenshot.

4. Operation requirement: Based on the page, write out
the steps to complete the following function: Follow
this author.
Answer: Click on Subscribed [[049,826,728,078]] to
follow this author.

6.2. Conversion of Agent Datasets
To convert Mind2Web to natural language with GPT4, we
use the following prompt:

Imagine that you are a robot operating a computer.
Like how humans operate the computer, you can move
the mouse, click with the mouse, or type some texts
with the keyboard.

**Your ultimate task is: “Find the lowest-priced
round trip flight with hotel on May 2 from Kathmandu,
Nepal KTM to Shanghai, China PVG and return on
May 5. Book a double room and check out with the
default flights.”.**



You are given previous actions: (format: element !
operation)

1. [link] Flight + Hotel ! CLICK,
2. [textbox] Where from? ! TYPE: KATH-

MANDU,
3. [div] Tribhuvan Intl Airport (KTM), Nepal !

CLICK,
4. [textbox] Where to? ! TYPE: SHANGHAI,
5. [div] Pudong Intl Airport (PVG), China !

CLICK,
6. [span] Sat 8 Apr - Sat 15 Apr ! CLICK,
7. [checkbox] 2 May 2023 ! CLICK,
8. [checkbox] 5 May 2023 ! CLICK,
Furthermore, you **secretly** know the following

steps of action. **(But you have to pretend this is the
result of your derivation and you don’t know it be-
fore)**

1. [button] Search ! CLICK,
2. [button] Recommended ! CLICK,
3. [div] Lowest Price ! CLICK,
4. [svg] ! CLICK,
5. [button] Choose your room ! CLICK,
6. [button] Book Business Double Room A !

CLICK,
7. [svg] ! CLICK,
8. [svg] ! CLICK,
9. [button] Choose ! CLICK
Please formulate an operational guide for future op-

erations for solving the task. The guide includes:
1. Plan: A **multi-step future** plan that does

not involve low-level operations **(start from cur-
rent screen and action, DON’T include previous ac-
tions)**; steps indexed by numbers. **Be sure to pre-
tend that you don’t know the future interface and ac-
tions, and don’t know the elements not existing on the
current screen.**

2. Action: The specific **immediate** action
that needs to be taken (Corresponding to the** very
next action** [button] Search ! CLICK at the box
{“x left”: 0.876, “y left”: 0.308, “width”: 0.063,
“height”: 0.034}), which should be detailed enough to
directly control the operation, such as specifying the
exact location (or box) to click, the exact content of
the text to type, the item to select.

**Output Format:** A JSON dictionary strictly
following the format:

{ “plan”: “...<Your Plan Here>”, “action”:
“...<Your Action Here>”, “operation”: “[button]
Search ! CLICK at the box “x left”: 0.876, “y left”:
0.308, “width”: 0.063, “height”: 0.034”} **Please do
not output any content other than the JSON format.
Don’t mention elements that only appear in HTML
such as svg, div.**

The returned answer from GPT-4 would be:

{ “plan”: “1. After searching, you’ll see a list of flight
and hotel packages. 2. Review the recommended op-
tions, usually highlighted for convenience. 3. Focus
on finding the lowest priced option. You might need to
navigate through various sorting or filtering features
to do this. 4. Once you’ve found the lowest priced op-
tion, select it to view more details. 5. In the detailed
view, you’ll have to choose your room type. Look for
options that fit your requirements, like a business dou-
ble room. 6. After selecting the room, proceed to fi-
nalize your booking. This might involve confirming
your choice and entering any required information. 7.
Review all the details carefully before finalizing the
booking to ensure everything is correct.”,

“action”: “Click the ’Search’ button to proceed
with the search based on the entered criteria. This but-
ton is located towards the right side of the screen.”,

“operation”: “[button] Search ! CLICK at the
box {“x left”: 0.876, “y left”: 0.308, “width”: 0.063,
“height”: 0.03}” }

7. Failure cases
The failure cases can be summarized into four categories
(Fig. 9):

1. Incorrect action prediction;

2. Incorrect coordinate prediction;

3. Incorrect GUI observation;

4. Hallucination.

Figure 9. Failure cases of GUI Agent.

8. More Generated Samples of CogAgent
To further demonstrate the capabilities of CogAgent, we
provide additional generated samples in this section.



Figure 10. More generated samples of CogAgent.



Figure 11. More generated samples of CogAgent.



Figure 12. More generated samples of CogAgent.



Figure 13. More generated samples of CogAgent.



Figure 14. More generated samples of CogAgent.



Figure 15. More generated samples of CogAgent.



Figure 16. More generated samples of CogAgent.



Figure 17. More generated samples of CogAgent.



Figure 18. More generated samples of CogAgent.



Figure 19. More generated samples of CogAgent.
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