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A. Dataset details

A.1. Sequential deepfake datasets

The Seq-DeepFake dataset. Recently introduced in the
study by Shao et al. [32], the Seq-DeepFake dataset is a
comprehensive collection of sequentially manipulated im-
ages. It encompasses two distinct subsets: Sequential Facial
Components Manipulation (Seq-FaceComp) and Sequential
Facial Attributes Manipulation (Seq-FaceAttr).
Seq-FaceComp subset. The Seq-FaceComp subset is an as-
sembly of images where facial components are transplanted
from a source image to a target image. This process results in
composite images that exhibit clearly distinguishable facial
parts, each with a designated sequence order. The subset con-
tains a total of 35,166 images, a blend of both manipulated
and original unaltered images. These images are annotated
to reflect 28 different manipulation sequences. The sequence
lengths vary, ranging from 1 to 5, with their distribution
frequencies being approximately 20.48%, 20.06%, 18.62%,
20.88%, and 19.96% respectively.
Seq-FaceAttr subset. In contrast, the Seq-FaceAttr subset
focuses on the direct modification of specific facial attributes
in the target image, independent of any source image. This
subset is composed of 49,920 images. Each image in this
collection is categorized under one of the 26 identified manip-
ulation sequence types. The distribution across the various
sequence lengths is maintained evenly, ensuring a balanced
representation in the dataset.
Common features and application. Noteworthy is the fact
that both subsets, Seq-FaceComp and Seq-FaceAttr, feature
a maximum sequence length of five, denoted as L = 5 in the
context of our methodology (as detailed in Section 3). This
characteristic is pivotal for our analysis. Moreover, these
datasets present a unique opportunity for evaluating mod-
els in a multi-label classification scenario, with a particular
focus on the sequences but independent of their specific or-
der. This aspect is critical in understanding and detecting
sequential manipulations in images, which has significant
implications in the field of computer vision, particularly in
the domain of deepfake detection and analysis.

A.2. Binary deepfake datasets

Overview of benchmark datasets. The field of deepfake
detection is underpinned by several benchmark datasets,
each playing a critical role in advancing binary classifi-
cation research. Prominent among these are FaceForen-
sics++ (FF++) [30], Celeb-DF (CDF) [22], WildDeepfake

(WDF) [44], DeepFakeDetection (DFD) [30], and the Deep-
Fake Detection Challenge (DFDC) [12].
FaceForensics++ (FF++). FF++ is renowned for its diverse
dataset, comprising 1,000 videos for each of its four distinct
manipulation techniques. This variety presents a comprehen-
sive challenge in detecting a range of deepfakes.
Celeb-DF (CDF). CDF is known for its high-quality forg-
eries, offering a dataset that includes 5,639 manipulated
videos and 590 original videos. The high fidelity of these
deepfakes makes CDF a stringent test for detection models.
WildDeepfake (WDF). Reflecting real-world scenarios,
WDF provides a balanced dataset with 3,509 fake and 3,805
genuine face sequences. This dataset is crucial for training
and evaluating models under realistic conditions.
DeepFakeDetection (DFD). DFD contributes with its col-
lection of 1,000 deepfake videos, adding to the diversity of
available test data.
DeepFake Detection Challenge (DFDC). The DFDC
dataset stands out with its substantial size, comprising an
equal distribution of 2,500 authentic and 2,500 manipulated
videos in its public test set.

Adaptation to binary classification. Our proposed model
is adeptly tailored for the binary classification of deepfakes.
By excluding the ranking loss component, LRank, from the
total loss equation (15) and limiting the number of learnable
class tokens to one, the model becomes streamlined for this
specific task. This configuration maintains its effectiveness
by focusing exclusively on distinguishing between genuine
and synthetic content, negating the need for sequence rank-
ing. This simplification is particularly advantageous for
efficiently addressing the binary nature of deepfake detec-
tion.

B. Implementation details
Feature extraction and tokenization. Our implementa-
tion begins with feature extraction using ResNet-34 and
ResNet-50 as backbone networks. The extracted spatial fea-
tures are then transformed into a sequence of tokens. These
tokens, along with L learnable class tokens, form the input
for a single-layer transformer.

Model training. The training of the model adheres to the
loss function specified in the total loss equation (15). The
hyperparameters—λ1, λ2, τ , and α—are set to values of 1,
1, 0.2, and 1, respectively. The training extends over 200



epochs, employing the AdamW optimizer in conjunction
with a cosine annealing learning rate schedule. We set the
initial learning rate at 10−4, reducing the learning rate for
the feature extractor by a factor of ten.

Stronger backbone for further improvement. In addi-
tion to the ResNet-based models, we have conducted exper-
iments using the Swin Transformer [25] as an alternative
backbone. For adapting the Swin-based model, we followed
the training procedures detailed in [25], extending the train-
ing duration to 400 epochs. These experiments were facili-
tated by Nvidia V100 GPUs.

Data augmentation techniques. Our approach includes
two innovative data augmentation techniques inspired by
SBIs [34], aiming to enhance the model’s robustness and gen-
eralization capabilities. The first technique, dubbed ”strong
augmentation”, involves generating a pseudo-fake image
from an authentic facial image. This process distorts the
facial landmarks of the original image to craft a modified ver-
sion that appears inauthentic. The second technique, ”weak
augmentation”, incorporates standard image classification
methods such as horizontal flipping, random cropping, color
jittering, and Gaussian blurring. In our training process,
strong augmentation is initially applied to create a pseudo-
fake image. Following this, we randomly select a fake image
from the dataset and pair it with genuine and pseudo-fake
images. This approach ensures a balanced representation
of each image type within the training dataset, crucial for
effective model training and performance.

Overview of the model architecture Illustrated in Fig-
ure 2, our proposed framework comprises two distinct
branches: the patch branch and the class branch. We employ
two types of tokens within these branches—patch tokens and
learnable class tokens—to capture the features of the image’s
patches and its overall class, respectively. This concept is
reminiscent of the Visual Transformer architecture, where a
CLS token encapsulates the class feature of an image, while
the patch tokens represent the local features. Our model
leverages these tokens to embody two levels of feature gran-
ularity: patch tokens for capturing local details, and class
tokens for identifying the type of manipulation. In the con-
text of binary deepfake detection, our methodology adopts
a multiple instance learning (MIL) perspective, utilizing a
sorted list of similarity scores between patch tokens. This
approach is regulated by the loss function (12) (LCLS).

For multi-label classification tasks, we employ distinct
loss functions, (17) (LU

BCE and LV
BCE) , to fine-tune the two

types of tokens, each tailored to enhance multi-label out-
come predictions. Additionally, we introduce a specialized
loss term, (13) (LRank) , designed to address the nuances of
multi-label ranking challenges. Our training regimen aims
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(a) Beginning of training
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(b) During training
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(c) End of training

0 200 400 600 800 1000
k

0.78

0.80

0.82

0.84

0.86

0.88

0.90

P(
x;

k)

(d) Zoom in from (c)

Figure A1. The distribution variation of the proposed P (x; k)
from the beginning training to the end on a fake sample.

to enable the network to perform deepfake classification
and localization concurrently. This is achieved by consider-
ing a cumulative loss function, (15) (LTotal). Overall, our
work adopts the MIL framework for the specified task and
proposes a novel strategy for managing multi-label ranking,
setting our approach apart from prior methodologies.

C. Additional results

Effectiveness of contrastive MIL. The efficacy of our
contrastive Multiple Instance Learning (MIL) approach is
thoroughly investigated by observing the changes in the prob-
ability distribution function P (x; k) over the course of train-
ing on deepfake datasets. Initially, as depicted in Figure A1
(a), there is a tendency for similarity values between gen-
uine and fake samples to congregate around certain pivotal
points. The implementation of contrastive MIL specifically
targets the separation of these similarity values associated
with genuine-fake pairings from those observed in genuine-
genuine and fake-fake combinations.

As the training progresses, notable shifts in the proba-
bility distribution function P (x; k) occur. These shifts are
highlighted in Figure A1 (b), illustrating the progressive sep-
aration and clarity achieved through our approach. At the
culmination of the training phase, there is a significant con-
gregation of genuine-fake instances trending towards zero,
as clearly demonstrated in Figure A1 (c). For a more detailed
understanding, Figure A1 (d) provides a closer examination
of the probability distribution function across various values
of k. This analysis is vital in understanding the subtleties of
deepfake detection within the framework of multi-instance
learning.



Setting λ1 (Lbce) λ2 (LRank) τ α Ranking Acc. (%)

I 1 1 0.2 1 74.54 (+0.00%)
II 0.5 1 0.2 1 73.42 (-1.12%)
III 1.5 1 0.2 1 73.22 (-1.32%)
IV 1 0.5 0.2 1 72.33 (-2.21%)
V 1 1.5 0.2 1 74.12 (-0.42%)
VI 1 1 0.5 1 74.55 (+0.01%)
VII 1 1 0.2 0.5 72.27 (-2.27%)

Table A1. The ablation studies of hyperparameters in losses.

Method Ranking Acc. (%) Intra-testing AUC (%) (FF++) Cross-testing AUC (%) (CDF)

Ours (separate) 74.54 99.82 89.12
Ours (joint) 74.62 99.89 90.23

Table A2. The results with simultaneously training on the tradi-
tional binary and sequential manipulation datasets.

Ablation studies on loss hyperparameters. We present
the ablation studies on the hyperparameters described in
weight vector (14) and the total loss equation (15), as shown
in TableA1. These investigations employ ResNet-50 as the
underlying architecture and are carried out using the Seq-
FaceComp dataset.

Simultaneous training within the unified framework.
To fully utilize the integrated architecture of the proposed
unified framework, we conducted exploratory experiments to
evaluate the advantages of simultaneous training on both the
Seq-FaceComp and FaceForensics++ datasets. The results,
as detailed in Table A2, show a moderate improvement in
sequential deepfake manipulation outcomes. However, we
observed a more substantial improvement in binary deepfake
classification tasks, especially in cross-testing scenarios.

D. More Qualitative Results
Grad-CAM visualization. We present qualitative results
utilizing Grad-CAM [31] on the Seq-FaceComp dataset. Se-
lected examples are shown in Figure A2. These heatmaps
are derived from the backpropagation of logits associated
with features such as ”Lip” and ”Nose”. The application of
contrastive MIL and ranking mechanisms notably refines the
heatmaps’ focus and precision, a comparison clearly visible
in Figure A2 (b) when contrasted with the baseline method.
It’s evident that areas showing lower similarity values align
with the manipulated regions in the images, corroborating
our expectations.

E. Limitations
Scope of applicability. While our contrastive multi-
instance learning technique demonstrates high accuracy in
distinguishing authentic from counterfeit instances, espe-
cially in the context of sequential manipulations, its appli-
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Figure A2. Qualitative results by Grad-CAM [31] between base-
line and the proposed approach. Two test images from the Seq-
FaceComp with “Lip” and “Nose” manipulation. (a) Although the
heatmap from the baseline has noticed the accurate region spo-
radically, it still has a gap to improve. (b) The heatmap from the
proposed approach has successfully focused on the manipulation
region.

cation has been predominantly in analyzing human facial
data. However, the realm of deep learning-based manipu-
lations is rapidly expanding, not just in the visual domain
but also encompassing audio and other digital media forms.
This expansion underscores the need for a more versatile
detection methodology capable of identifying multi-modal
manipulations. Addressing this broader spectrum of deep-
fake phenomena remains a crucial challenge and an area for
future development in our approach.


