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S1. Convergence analysis

S1.1. Forward step method (Alg. 1)

Proposition S1 Convergence guarantee of Alg.1. Let ω ≥
1, ti−1, C, and ∅ be appropriate inputs for

xθ(·, ti−1) = ωx̄θ(·, ti−1, C)− (1− ω)x̄θ(·, ti−1,∅).
(S1)

If x̄θ(·, ti−1, C) is monotone and L-Lipschitz with L ≤
1
ω

σti

σti−1
αti

(e−hi−1)
, then the forward step method converges

for all step size ρ such that

0 < ρ < 2
σti/σti−1

− αti(e
−hi − 1)ωL

(σti/σti−1
+ αti(e

−hi − 1)(|ω|+ |1− ω|)L)2
.

(S2)

To prove Proposition S1, we use the following
Lemma S1 from page 5 in [S4] and :

Lemma S1. Let a, b ∈ R. If f, g : X → Y be Lf , Lg-
Lipschitz continuous, respectively, then af + bg is |a|Lf +
|b|Lg-Lipschitz continuous.

Now we start the proof of Proposition S1.

Proof of Proposition S1. Define A : RD → RD where

A(z) :=
σti

σti−1

z − αti(e
−hi − 1)zθ(z, ti−1)− ẑti (S3)

for all feasible z ∈ RD, so that the forward step method be
written as

ẑti−1
= ẑti−1

− ρA(ẑti−1
). (S4)
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For all feasible z and z′ ∈ RD,

∥A(z)−A(z′)∥ =

∥∥∥∥ σti

σti−1

(z − z′)

− αti(e
−hi − 1)(zθ(z, ti−1)− zθ(z

′, ti−1))

∥∥∥∥
≤ σti

σti−1

∥z − z′∥

+ αti(e
−hi − 1)∥zθ(z, ti−1)− zθ(z

′, ti−1)∥.

(S5)

holds by the triangle inequality. Using Lemma S1 and the
assumption of Proposition S1, zθ(·, ti−1) is (|ω|+|1−ω|)L-
Lipschitz continuous. Thus, we have

∥A(z)−A(z′)∥ ≤ σti

σti−1

∥z − z′∥

+ αti(e
−hi − 1)(|ω|+ |1− ω|)L∥z − z′∥

=

(
σti

σti−1

+ αti(e
−hi − 1)(|ω|+ |1− ω|)L

)
∥z − z′∥.

(S6)
Equation (S4) converges if A is β-cocoercive and ρ ∈
(0, 2β) [page 39 in [S4]]. So we should check the coco-
ercivity of A as follows:

⟨A(z)−A(z′), z − z′⟩ = σti

σti−1

∥z − z′∥22

− αti(e
−hi − 1)

(
ω⟨x̄θ(z, ti−1, C)− x̄θ(z

′, ti−1, C), z − z′⟩

+ (1− ω)⟨x̄θ(z, ti−1,∅)− x̄θ(z
′, ti−1,∅), z − z′⟩

)
.

(S7)
Since x̄θ(·, ti−1, C) is monotone, ⟨x̄θ(z, ti−1, C) −
x̄θ(z

′, ti−1, C), z − z′⟩ ≥ 0 and ⟨x̄θ(z, ti−1,∅) −
x̄θ(z

′, ti−1,∅), z − z′⟩ ≥ 0 holds. Because ω ≥ 1,

⟨A(z)−A(z′), z − z′⟩ ≥ σti

σti−1

∥z − z′∥22 − αti

· (e−hi − 1)ω⟨x̄θ(z, ti−1, C)− x̄θ(z
′, ti−1, C), z − z′⟩.

(S8)
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By the Cauchy-Schwarz inequality,

⟨x̄θ(z, ti−1, C)− x̄θ(z
′, ti−1, C), z − z′⟩

≤ ∥z − z′∥2∥x̄θ(z, ti−1, C)− x̄θ(z
′, ti−1, C)∥2

≤ L∥z − z′∥22,
(S9)

where the second inequality holds because x̄θ(·, ti−1, C) is
L-Lipschitz. Merging Eq. (S6), Eq. (S8) and Eq. (S9), we
have

⟨A(z)−A(z′), z − z′⟩

≥ σti

σti−1

∥z − z′∥22 − αti(e
−hi − 1)ωL∥z − z′∥22

=

(
σti

σti−1

− αti(e
−hi − 1)ωL

)
∥z − z′∥22

≥

(
σti

σti−1
− αti(e

−hi − 1)ωL
)
∥A(z)−A(z′)∥22(

σti

σti−1
+ αti(e

−hi − 1)(|ω|+ |1− ω|)L
)2 ,

(S10)

which indicates A is
σti/σti−1

−αti
(e−hi−1)ωL

(σti/σti−1
+αti

(e−hi−1)(|ω|+|1−ω|)L)
2 -

cocoercive.

S1.2. Notes on instability of fixed point iteration in
large classifier-free guidance

In Section 4.1 of the main paper, we explained why the
fixed point iteration (FPI)-based method [S2] loses stabil-
ity in the context of large classifier-free guidance. Here, we
formulate and prove this as Proposition S2. Proposition S2
suggests that FPI may not converge when the classifier-free
guidance is large.

Proposition S2 Instability of FPI in large classifier-free
guidance. Let ω ≥ 1, ti−1, C, and ∅ be appropriate inputs
for

xθ(·, ti−1) = ωx̄θ(·, ti−1, C)− (1− ω)x̄θ(·, ti−1,∅).
(S11)

If x̄θ(·, ti−1, C) is Lipschitz continuous with the constant

1

|ω|+ |1− ω|
· σti

σti−1
αti(e

−hi − 1)
, (S12)

then

F (·) :=
σti−1

σti

αti(e
−hi −1)xθ(·, ti−1)+

σti−1

σti

x̂ti (S13)

is nonexpansive (i.e., 1-Lipschitz continuous).

Proof of Proposition S2. By the assumption, Eq. (S11) and
Lemma S1, xθ(·, ti−1) is σti

σti−1
αti

(e−hi−1)
-Lipschitz con-

tinuous. By Eq. (S13) and Lemma S1, F (·) is nonexpan-
sive.

Proposition S1 also suggests our method has more
generous Lipschitz condition for converge than [20]:
1
ω

σti

σti−1
αti

(e−hi−1)
> 1

|ω|+|1−ω|
σti

σti−1
αti

(e−hi−1)
.

S2. Algorithm 2

Algorithm 2 Inversion of DPM-Solver++(2M)

Require: initial value x0, time steps {ti}Mi=0, data prediction
model zθ , UPDATE, D† in ??.

1: Denote hi := λti − λti−1 and ri :=
hi−1

hi
for i = 1, . . . ,M .

2: ẑtM ← D
†(x0) if LDM else x0

3: for i←M to 2 do ŷti ← ẑti

4: for j ← 1 to 2J do
5: ŷti−j/J

←
σti−j/J

σt
i−(j−1)/J

(ŷti−j/J
+

αti−j/J
(e−hi−j/J − 1)zθ(ŷti−(j−1)/J

, ti−j/J))
6: end for
7: ẑti−1 ← ŷti−1

8: repeat
9: d′

i ← zθ(ẑti−1 , ti−1) + 1
2ri

(zθ(ŷti−1 , ti−1) −
zθ(ŷti−2 , ti−2))

10: z′
ti ←

σti
σti−1

ẑti−1 − αti

(
e−hi − 1

)
d′
i

11: UPDATE(ẑti−1 ; ẑti ,z
′
ti )

12: until converged
13: end for
14: ẑt0 ←

σt0
σt1

(
ẑt1 + αt1

(
e−h1 − 1

)
zθ(ẑt1 , t0)

)
15: repeat
16: z′

t1 ←
σt1
σt0

ẑt0 − αt1

(
e−h1 − 1

)
zθ(ẑt0 , t0)

17: UPDATE(ẑt0 ; ẑt1 ,z
′
t1 )

18: until converged
19: return ẑt0

S3. Experimental details
S3.1. Reconstruction

S3.1.1 Pixel-space DPM

For pixel-space DPM, we used gradient descent without
momentum, with l2 loss and a learning rate of 0.1. To dy-
namically adjust the learning rate, when the minimum loss
for the last 5 iterations did not improve, the learning rate
was halved, but not below a minimum of 0.001. The num-
ber of iterations was a maximum of 500. The convergence
criterion was ∥x′

ti − x̂ti∥2 < 10−3. The original model op-
erates in half float (i.e., 16-bit), so it was used as is during
gradient descent. We used J = 100 in Algorithm 2. We
experimented with 100 images.

S3.1.2 Latent diffusion model (LDM)

For LDM, we generated images with classifier-free guid-
ance of 3.0, and the same prompt was employed for the in-
version process. We used the forward step method, with l2
loss. The initial step size was set as 0.5 for Algorithm 1,
and 10/t for Algorithm 2 except for the first step (t = 0)
where it was 1. To dynamically adjust the step size, when
the minimum loss for the last 20 iterations did not improve,



the step size was halved. For numerical stability, we applied
a 20-step warmup (i.e., linearly increasing the step size from
0). We used J = 10 in Algorithm 2. The number of iter-
ations was a maximum of 500. The convergence criterion
was ∥z′

ti − ẑti∥2 < 10−3. Every operation was held in float
(i.e., 32-bit). We experimented with 100 images.

Decoder inversion We applied decoder inversion for ev-
ery method for a fair comparison, including naı̈ve DDIM
inversion and [S2]. We used Adam with l2 loss and a learn-
ing rate of 0.1. For improved convergence, we applied a
cosine learning rate scheduler with 10-step warmup within
a total of 100 iterations.

S3.2. Application: Tree-ring watermark

The work of tree-ring watermark in [S5] injects a water-
mark in the frequency domain of noise and then generates
an image with noise obtained by inverse transformation.
We tested on detection of watermarks by generating various
types of watermarks with the same radius and calculated l1
difference between the original watermark and the water-
mark obtained by inversion. The radius was set the same
to make the comparison consistent and detection difficult.
We tested on three watermarks with the shape of a tree-ring
and a radius of 6 pixels. For watermark creation, we set a
constant and designated pixel values to be random but close
to constant to make the difference scale reliable.

S3.3. Application: Background-preserving editing

In this experiment, we employed the open-source code of
[S3] to compare Algorithm 1 with three other methods: (i)
The original code utilizing the latents stored during the gen-
erating process (i.e., oracle), (ii) the naı̈ve DDIM inversion,
and (iii) the naı̈ve DDIM inversion with decoder inversion.
We used classifier-free guidance of 7.5 and for decoder in-
version, we applied a cosine learning rate scheduler with
50-step warmup within a total of 500 iterations. All other
experimental settings remained identical to those of LDM.

S4. Additional results
S4.1. Reconstruction

In Sec. 5.1 of the main paper, we performed the reconstruc-
tion of noise and image to evaluate the exact invertibility of
the proposed methods. We provide more qualitative results
in Fig. S1. In Fig. S1, we addtionally provide the FPI-based
method of Pan et al. [S2], namely AIDI-E.

S4.2. Application: Tree-ring watermark

In Sec. 5.2 of the main paper, we demonstrated the im-
proved detection of watermarks [S5] by employing our al-
gorithm, even when the images were generated using high-
order DPM-solvers. We provide an additional example of

watermark detection / classification in Figs. Fig. S2 and
Fig. S3. We experimented with different shaped watermarks
and prompts from the main paper.

S4.3. Application: Background-preserving editing

In Sec. 5.3 of the main paper, we experimentally demon-
strated our proposed methods enable the background-
preserving editing, without the need for the original latents.
In Figs. S4 and S5, we show additional results with differ-
ent prompts.
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Figure S1. Our Algs. 1 and 2 significantly reduce reconstruction errors, whether it’s for images or noise, DDIM or high-order DPM-solvers,
or pixel-space DPM or LDM. The generation / inversion method varies for each row, e.g., ‘naı̈ve / 1000’ indicates that we performed the
naı̈ve DDIM inversion for 1000 steps. ‘Alg. 1 / 50’ and ‘Alg. 2 / 10’ attempt exact inversion with 50 steps of DDIM and 10 steps of
DPM-Solver++(2M), respectively. Achieving exact inversion in LDM is challenging due to information loss from the autoencoder and
instability caused by a classifier-free guidance of 3.0. Nonetheless, our algorithm produces good results (extremely low residual error in
Alg. 1 for DDIM on the 3rd row and in Alg. 2 for DPM-solver++(2M) on the 6th row) also in LDM.



Embedded
watermark

Generated by
DPM-Solver++

naı̈ve DDIM inversion
(Recon. / Error)

naı̈ve DDIM inversion w/ D†

(Recon. / Error)
Algorithm 2 (ours)

(Recon. / Error)
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Figure S2. Our Algorithm 2 enables accurate reconstruction of Tree-ring watermarks [S5] in the Fourier space of the initial noise (zT ).
The Tree-ring watermark is embedded in the Fourier space of the initial noise in the shape of tree-rings and can be utilized for copyright
tracing (column 1). Then, the image is generated starting from the watermarked noise. The practical approach is to accelerate image
generation using methods like DPM-Solver++(2M) [S1] (column 2). NMAEs are shown on each error map. Using Algorithm 2 (columns
7-8) for watermark reconstruction results in lower errors compared to employing naı̈ve DDIM inversion (columns 3-6), achieving nearly
50% reduction in NMAE.
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(a) Naı̈ve DDIM inversion
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(b) naı̈ve DDIM inversion w/ D† in Sec. 4.1
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Figure S3. Our algorithm’s strong reconstruction performance allows for the classification of tree-ring watermarks as well. For copyright
tracing, it is possible to generate images by embedding different unique watermarks. Three distinct watermarks (WM 1,2, and 3) are
displayed in the first column of Fig. S2. In the confusion matrices, ‘Predicted’ corresponds to the watermark with the smallest l1 difference
among the three watermarks. In Figs. S3a and S3b, the naı̈ve DDIM inversion encounters difficulties in detecting WM 2. In contrast
(Fig. S3c), our Algorithm 2 performs well in detecting WM 2.



Method
Prompt

“Luxury yellow purse on a table”
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naïve

DDIM

inversion
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DDIM
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w/ 𝐷†

Alg. 1
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Error
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Figure S4. Additional experiment result on background-preserving editing. The emphasized word indicates the object changed in the
generated image, replaced with different words at the bottom of the figure (e.g., purse becomes ‘bucket’). Our Alg. 1 preserves the
background and allows diverse editing, even when the original image’s path is unknown (i.e., (zti)

M
i=0). The first row (Oracle) shows

results with the full trajectory, while subsequent rows use only the generated image (i.e., x0). In these cases, we estimate the trajectory
through each inversion method and edit based on the inversion results. Estimating the original trajectory using the basic DDIM inversion
(rows 2-3) fails to keep the background (background in the error map is not gray) compared to the Oracle and doesn’t consistently edit the
‘purse’ as prompted. In contrast, using our Alg. 1 (row 4) preserves the background similarly to the Oracle (with the background in the
error map being gray) while consistently editing the ‘purse’ as prompted. Background NMSEs are inset.
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Figure S5. Additional experiment result on background-preserving editing using prompt ”A basket with oranges on a table”. This exper-
iment has the same setting with Fig. S4. As we attempt to edit the basket, the oranges should be treated as part of the background and
should not be changed. Our Alg. 1 (row 4) preserves the oranges well, similar to the Oracle (row 1). In contrast, the naı̈ve DDIM inversion
indicates significant changes to the appearance of oranges (rows 2-3).
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