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Figure I. Overview of aggregation module.

This document includes the following contents: 1) more
architectural details of our method, 2) more training and
evaluation details of our method and others, 3) distribu-
tion of our overlap-based data splitting, 4) more discus-
sions about the experimental results, 5) additional quanti-
tative and qualitative results for the comparision with other
methods and our ablation study, and 6) discussion on limi-
tations and future work.

A. Architectural Details
A.l. Feature Aggregation and Cost Filtering

Analogous to existing method, UFC [7], we use attention-
based operations for refining both feature and cost volume.
We present an overview of the adopted aggregation module
in Fig. L.

A.2. Loss Signals

In Fig. I, we show an illustration of our training losses. As
shown in the figure, the rendering loss is computed between
I and I, pose loss is computed using the estimated cam-
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Figure II. Illustration of our training losses.

era pose [R|ﬂ, flow loss is computed using the estimated
flow 1,2 and the triplet consistency loss is computed us-
ing 6, [R|t], and Fy_,.

B. More Training and Evaluation Details

B.1. Training Details
B.1.1. Our Method

Training Strategy. Our training procedure closely resem-
bles that of Du et al. [4], with distinctions in data usage
and augmentation. Instead of applying random cropping
and flipping, as done by Du et al., we used a subset of
datasets without data augmentation. We train the model
with 4 A6000 GPUs for 1~ 2 days, iterating for 50K it-
erations, with 192 rays and 64 sampled points on epipolar
lines. With this configuration, our rendering speed is ap-
proximately 0.4 FPS.

B.1.2. FlowCAM [10]

Architecture. The inference process of FlowCAM is di-
vided into three distinct steps. First, each frame within



a video sequence undergoes feature extraction, yielding
deep features and backward flows. Subsequently, using the
single-view pixelNeRF algorithm to a surface point cloud,
representing the anticipated 3D termination point for each
pixel. Next, within each frame, confidence weights are
computed among the points. This is achieved by utilizing
the RAFT [11] predictions. Finally, these computed con-
fidence weights are fed into a sequence of linear layers to
derive the final confidence weights required for solving the
Weighted Procrustes formulation [2], and then the desired
views are re-rendered.

Training Strategy. For training, we take 256256 input
images. While RealEstate10K was already trained by the
authors and the pretrained weights were available, we ver-
ify that the training scheme authors provide can reliably
transfer to ACID, we attempted reproducing the results on
RealEstate first, for which we were able to reproduce the re-
sults close to those reported in the paper. Given this success,
we followed the same training procedure used and released
by the authors for RealEstate to train on ACID. We train for
50K iterations with a single A6000 GPU, which takes ap-
proximately 1.5 days, with leaving other hyperparameters
unchanged.

B.1.3. Rockwell ez al. [8]

Architecture. In their architecture, there are three main
components: Image encoder, ViT layer and Essential Ma-
trix Module followed by MLPs. Taking 256 %256 input im-
age pairs as inputs, the image is resized to 224 x224, and
then the model first extracts deep features via vanilla resnet-
18. Then the feature maps from the coarsest layer are fed to
ViT-Tiny for self-attention operations. Subsequently, these
feature maps are fed to the Essential Matrix Module, which
performs the cross-attention that emulates the 8-point algo-
rithm, and finally, the output is reshaped and fed to the pose
regression MLPs.

Training Strategy. For training, we follow the same pro-
cedure and adopt the default hyperparameters used in the
training scripts, as provided in the official github repository
that the authors provide for both RealEstate 10K and ACID.
We use the same data sampling strategy as the one we used
to train our model. Specifically, for each scene consisting of
a video sequence, we use the first and the last frame as the
input images, and the ground-truth relative pose for super-
vision is computed between them. We trained the network
for a total of 120K iterations with batch size set to 32 using
a single A6000 GPU.

B.1.3. RelPose [14]

Architecture. Relpose inference is divided into two steps.
A pairwise pose prediction step is followed by a joint rea-

soning step of multiple pairwise estimated relative poses.
By taking a set of images as input, they first group all pos-
sible pairs of images to estimate all the pairwise relative
poses between images. Leveraging an energy-based model,
the estimated pairwise relative poses recover a probabil-
ity distribution over conditional relative rotations where the
condition is given as the uniformly sampled relative pose
R € SO(3). Estimated poses are further refined in the joint
reasoning step by inducing a joint likelihood over the cam-
era transformations across multiple images and iteratively
improving an initial estimate by maximizing this likelihood.

Training Strategy. For training, we follow the same
training strategy as [4] and ours, since we aim to compare
the performance of relative pose estimation given stereo
pairs. However, when using only stereo pairs as input, the
joint reasoning step cannot be done as there is only one
estimated pose. To make a fair comparison, we increased
the number of uniformly sampled relative pose R € SO(3)
from N = 36864 to N = 250000, which is the number
of queries used in the second stage of the framework. The
training was done for 400K iterations of batch size set to 64,
using four A6000 GPUs.

B.1.4. DBAREF [1]

Architecture. The architecture of DBARF consists of
three components: an image encoder, a Pose and Depth Es-
timation Module, and a Renderer for novel view synthesis.
By selecting a target image and nearby images from a scene
graph, the ResNet-like [6] image encoder first extracts a fea-
ture map used for the subsequent steps. The feature maps
of the nearby images are then warped to the target view us-
ing the currently estimated camera poses and depths to con-
struct a local cost map for pose and depth estimation done
with training a recurrent GRU. The estimated pose is then
used as an input of the Renderer, where they use the IBR-
Net [13] to render novel views. To enable robust optimiza-
tion of both the Pose and Depth Estimation Module and the
Renderer, they adopt a staged training strategy of dividing
the overall training process into three steps: training only
the Pose and Depth Estimation Module, training only the
Renderer, and jointly training the two components.

Training Strategy. For training, we first take 256256
input images and then resize them to 224x224. As there
are no provided weights for DBARF on RealEstate10K and
ACID, we trained the network from scratch following the
process provided by the authors. For both datasets, we se-
lected six nearby views of the target view during training
by selecting three frames before the target frame with a 10,
20, and 30 frame difference each and three frames after the
target frame with a 10, 20, and 30 frame difference. We
trained the network for a total of 200K iterations, where the
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Figure III. Qualitative results for component ablation study. Consistent with the quantitative results (Table 3 of the main paper), each
variant exhibits apparent differences in qualitative comparisons and shows the efficacy of our designed components.

Small Small
e Middle 4007w Middle

800-
= Large 100, ™= Large

X 0.0 0.2 0.4
Overlap Overlap

0.6 08 10

(a) RealEstate-10K (b) ACID

Figure IV. Distribution of the data splits.

three stages of their proposed staged training were repeated
every 10K steps. The training was done with a single A6000
GPU.

B.2. Evaluation Details

Differences of the evaluation strategy in original work
of DBARF and FlowCAM and our adopted evaluation
strategy. In the original evaluation strategy of DBAREF,
given a sequence of frames, DBARF picks an abitrary view,
treating it as a target view, and selects nearby views, consid-
ering them as context images. Subsequently, pairwise pose

estimation and depth estimation are performed between the
target image and each of the context images. The estimated
values are then fed to GeNeRF for rendering and evalua-
tion. In our evaluation approach, we assume that only two
context images and a relative camera pose to the target view
are provided. This means that in contrast to the original
evaluation setting, where target view is accessible for depth
and pose estimation, our evaluation setting does not employ
the target view for the model, but only accessible for metric
computation.

In the evaluation setting of FlowCAM, FlowCAM first
feeds all the frames to single-view PixelNeRF, and they are
used for warping by an off-the-shelf optical flow network to
output matching confidence that will be used for Weighted
Procrustes formulation. Similar to DBAREF, the target views
are accessed for pose estimation in this evaluation setting.
In our evaluation setting, we substitute the estimated poses
with ground-truth poses except for the relative pose between
I, and I, which is their prediction and remains unchanged.



Fixed Pose and Generalized NeRF. In Table 4 of the
main paper, we conducted additional ablation study and
analysis. While all other experiments follow the same eval-
uation protocol, some subtle changes are made for (a).
Specifically, as PDC-Net encountered some cases where
RANSAC failed to converge due to extremely small over-
lapping regions with barely any correspondence, we ex-
clude such cases during metric calculations. For a fair com-
parison, for the other variants, i.e., Rockwell et al.+[4] and
ours, we also disregard those scenes, which leads to differ-
ent results compared to our main table.

C. Data Split Details

We provide the statistics of each overlap-based data split of
RealEstate10K and ACID in Fig. I'V.

D. More Discussions

Pose Supervision. In this section, we discuss the re-
sults we obtained from the experiment that combines di-
rect pose supervision to DBARF and FlowCAM frame-
work. Contrary to initial expectations, although some quan-
titative performance improvements were observed for im-
age quality assessment, adding direct pose supervision re-
sults in a decline in their pose estimation performance de-
spite our meticulous efforts to optimize the hyperparameters
and conduct multiple trials. We hypothesize that the per-
formance degradation could be attributed to their original
training strategy, which only assumes image sequences with
small viewpoint changes and could have influenced over-
all performance largely. Another potential reason is that
their incorporation of pose estimation and the rendering re-
quires non-trivial implementation considerations to obtain
a boosted synergy, or the confidence score produced by the
off-the-shelf model might’ve made a disparity between the
updated renderer and the optical flow prediction. Despite
the challenges we faced and the hypothesis we made, we
leave this exploration as future work since such investiga-
tion is beyond the scope of this paper.

E. More Results
E.1. Absolute Translation Error with Scales

Table I presents the results of translation estimation eval-
uated with both absolute error in meters and angular dif-
ference in degrees. Note that, as mentioned in the main pa-
per, evaluating absolute error requires assessing the models’
ability to gauge scales via, e.g., object recognition, since
translation scale is theoretically indeterminable in two-view
geometry. This could potentially result in erroneous inter-
pretations regarding the models’ proficiency in estimating
relative camera pose from two views.

E.2. More Qualitative Results

Fig. V shows the correspondences built by our method and
the overlapping regions characterized by high confidence
scores. As we can see, our method can detect matching
points robustly across different scenarios.

Fig. VI visualizes the epipolar lines with the relative
poses estimated by different methods. Visually inspected,
our method yields more accurate results especially on chal-
lenging cases with small overlap.

Fig. VII and Fig. VIII present more novel view rendering
results of different methods. On both datasets, our method
yields outcomes that are sharper and more geometrically ac-
curate.

We’ve also obtained more novel view rendering results
our method under continuous viewpoint change, which can
be found in the accompanying video.

E.3. Qualitative Results for Ablation Study

In Fig. III, we provide qualitative comparisons for each vari-
ant introduced for the component ablation study. Consistent
with the quantitative results, each variant exhibits apparent
differences in qualitative comparisons as well.

F. Limitations and Future works

As our work takes two input views as inputs, it fails to
model dynamic scenes and view extrapolation. The visual
examples are found in the accompanying video.

In our future work, we plan to incorporate designs
that can aggregate information from more than two views,
broadening our scope to encompass multi-view encoding or
aggregation. Additionally, we plan to train our model on
larger real-world data to enhance its universality and practi-
cal applicability to real-world situations.



RealEstate-10K ACID
Overlap Task Method Translation Translation Translation Translation
Avg(m)| Med(m)| STD(m)|| Avg(®)| Med(°)| STD(°)||Avg(m)| Med(m)| STD(m)|| Avg(®)| Med(°) STD(°)|
Matching SP+SG (3, 5,9] 0.973 0.759 0.840 12.549 4.638 23.048 0.979 0.661 1.094 22214  7.526 33.719
PDC-Net+ (5, 12] 0.696 0.597 0.591 6.913 2.752 15.558 0.667 0.573 0.714 15.664 4215 29.640
L Rockwell et al. [8] | 1.692 1.459 1.119 91.455 91499 56.872 | 1.576 1.057 3.557 | 88.421 88.958 36.212
Pose Estimation
Small RelPose [14] - - - - - - - - - - - -
DBARF [1] 2.782 2.549 1.803 126.282 140.358 43.691 | 2.134 1.187 6.959 | 95.149 99.490 47.576
Pose-Free NeRF | FlowCAM* [10] 1.543 1.400 0.901 112.094 118.786 33.168 | 0.092 0.040 0.166 | 94.618 89.410 40.611
Ours 0.532 0.353 0.642 11.862 5.344  21.080 | 0.378 0.171 0.533 | 23.689 11.289 30.391
Matching SP+SG (3, 5,9] 0.390 0.344 0.261 9.295 3.279 20.456 0.528 0.466 0.431 16.455 5426  29.035
PDC-Net+ [5, 12] 0.360 0.322 0.253 6.667 2.262 18.247 0.612 0.563 0.482 14940  4.301 27.379
L Rockwell et al. [8] | 0.842 0.705 0.581 82.478  82.920 55.094 | 0.713 0.554 0.649 | 90.555 90.799 51.469
. Pose Estimation
Medium RelPose [14] - - - - - - - - - - - -
DBARF [1] 0.816 0.574 0.782 79.402 75408 54485 | 0.772 0.473 0931 | 77.324 77.291 49.735
Pose-Free NeRF | FlowCAM* [10] 0.068 0.048 0.065 127.306 133.035 32911 | 0.080 0.036 0211 | 96.228 89.828 42.405
Ours 0.203 0.150 0.178 10.187 5749  15.801 | 0.324 0.133 0.615 | 21.401 10.656 28.243
Matching SP+SG (3, 5,9] 0.612 0.665 0.202 21.415 7.190 34.044 0.619 0.641 0.260 22.018 7.309  33.775
PDC-Net+ [5, 12] 0.601 0.659 0.200 16.567 5.447 29.883 0.707 0.606 0.882 18.447 4357  35.564
L Rockwell et al. [8] | 0.468 0.363 0.377 91.851 88923 57.444 | 0431 0.304 0.457 | 86.580 87.559 50.369
Pose Estimation
Large RelPose [14] - - - - - - - - - - - -
DBARF [1] 0.217 0.098 0.318 50.094 33959 43.659 | 0.281 0.111 0.488 | 54.523 38.829 45453
Pose-Free NeRF | FlowCAM* [10] 0.025 0.011 0.34 133.236  144.151 39.139 | 0.089 0.037 0.2987 | 99.362 93.467 42.823
Ours 0.095 0.067 0.102 15.544 7907  24.626 | 0.456 0.146 2762 | 22935 10.588 30.974
Matching SP+SG (3, 5,9] 0.749 0.629 0.654 14.887 5.058 27.238 0.703 0.610 0.676 20.802 6.878 32.834
PDC-Net+ [5, 12] 0.696 0.0.597 0.591 10.100 3.243 22.317 0.671 0.587 0.744 16.461 4292  31.391
L Rockwell et al. [8] | 1.145 0.821 1.022 90.115  88.648 40.948 | 0.833 0.500 2.041 | 88.433 88.961 36.197
Pose Estimation
Avg RelPose [14] - - - - - - - - - - - -
DBARF [1] 1.603 0.930 1.787 93.300 102.467 57.290 | 0.939 0.366 3901 | 71.711 68.892 50.277
Pose-Free NeRF | FlowCAM* [10] 0.089 0.048 0.125 | 121.645 32.418 33.753 | 0.612 0.102 5275 | 97.231 91.536 42.067
Ours 0.332 0.177 0.506 12.766 7.534 15510 | 0.404 0.150 1.965 | 22.809 14.502 21.572

Table I. Translation estimation performance evaluated with both absolute error (in meters) and angular error (in degrees).

Note that since

translation scale is theoretically indeterminable in two-view geometry, evaluating absolute error requires assessing the models’ ability to
gauge scales via, e.g., object recognition. This could potentially result in erroneous interpretations regarding the models’ proficiency in
estimating relative pose from two views. *: FlowCAM [10] results have been updated to rectify an error in the numerical values originally
presented. We apologize for any inconvenience caused.



Figure V. Randomly selected correspondences and confident regions. For each pair of images, we visualize a set of randomly selected
correspondences (left), and from the complete set of correspondences, and those with confidence score of higher than a threshold 7 are
shown as visible (right).
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Figure VI. Comparisons of visualized epipolar lines.
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Figure VII. Qualitative comparison on RealEstate10K.
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Figure VIII. Qualitative comparison on ACID.
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