
Appendices

Overview:
• In Appendix A, we present more results of the generaliza-

tion impairments of NTL models on third-party domains.
• In Appendix B, we present detailed formula derivation.
• In Appendix C, we provide more details of the implemen-

tations of our experiments.
• In Appendix D, we present additional experiments and

analyses for attacking NTL models.
• In Appendix E, we show more results of the proposed

defense method.

A. More Empirical Results
In this section, we present more empirical results to sup-
port our findings of the generalization impairments of NTL
models. In Appendix A.1, we provide more details about
the experiment of generalization impairments shown in our
main paper. We also show the generalization impairments
on other datasets. In Appendix A.2, we present more re-
sults on the two impairment patterns. In Appendix A.3, we
present more results of the loss landscape of NTL models.

A.1. Generalization Impairments on Third-Party
Domains

Complementary details for the experiment of general-
ization impairments. This paper starts by exploring the
performance of target-specified NTL models on unseen
third-party domains. In the experiment of Fig. 2 in the main
paper, MNIST (MT) [10] and MNIST-M (MM) [13] are ser-
viced as the source and target domain (see Fig. 5 (a-b)). SL
model is trained on MT, and NTL methods (NTL [49] and
CUTI [50]) are trained on MT and MM. Specifically, we
involve three kinds of third-party domains:
• Perturbed source domain: we perturbed the source do-

main by adding Gaussian noise on the image with differ-
ent standard deviations (i.e., std = {0.1, 0.5, 1.0, 2.0}).
Typical perturbed images are shown in Fig. 5 (c-d)

• Augmented source domain: we augment the image by us-
ing RandAugment [8]. In detail, we show the results of
weak augmentation (i.e., RandomCrop), 5 kinds of aug-
mentations randomly sampled from the RandAugment,
and 10 kinds of randomly sampled augmentations. Exam-
ples of the augmented images are shown in Fig. 5 (e-f).

• Real domains collected from different environments. We
consider the SVHN (SN) [39] and SYN-D (SD) [43] as
third-party domains collected from the real world. Images
in the SN and SD are shown in Fig. 5 (g-h).

Generalization impairments on other datasets. In ad-
dition, to verify the wide existence of the generalization
impairments of NTL methods, we also show the results
on CIFAR10→STL10 and VisDA-T→VisDA-V in Fig. 6.

(a) MT (source domain) (b) MM (target domain)

(c) Perturbed MT (std = 0.1) (d) Perturbed MT (std = 0.5)

(e) Augmented MT (5strong) (f) Augmented MT (10strong)

(g) Read domain (SN) (h) Read domain (SD)

Figure 5. Images in each domain. (a-b) and (g-h) are four real
domains, where (a) MT and (b) MM are the source domain and
target domain in our experiments, respectively. (g) SN and (h)
SD service as third-party domains collected from the real world.
(c-d) show the perturbed source domain images. (e-f) show the
augmented source domain images.

It is worth noting that for CIFAR10→STL10 and VisDA-
T→VisDA-V, there are no more public-available real do-
mains with the same labels but collected from different
environments. Thus, we only show results on perturbed
source domains and augmented source domains. The results
in Fig. 6 further confirm that the generalization of target-
specified NTL models are impaired with varying degrees on
third-party domains (compared to SL models).

A.2. Impairment Patterns

A.2.1 Over-confident prediction

Briefly, the pattern of “over-confident prediction” means
that NTL models exhibit over-confident predictions on third-
party domains as well as the target domain. In this section,
we first show more results on the distribution of per-sample
confidence. Besides, we show that NTL models will also
make over-confident predictions on other datasets.

More results of confidence distribution. As shown in
Fig. 7, we plot the distribution of prediction confidences
on the source domain Ds (CIFAR10), the target domain
Dt (STL10), and perturbation-based third-party domains
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(a) CIFAR10 (C10) → STL10 (S10) (b) VisDA-T (VT) → VisDA-V (VV)

Figure 6. The accuracies of SL and target-specified NTL (NTL [49] and CUTI [50]) on third-party domains, including pertubed source
domains, augmented source domains. (a) Results on CIFAR10 (C10) → STL10 (S10). (b) Results on VisDA-T (VT) → VisDA-V (VV).
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(a) SL (from left to right, std = {0.05, 0.1, 0.2, 0.3, 0.4, 0.5})
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(b) NTL (from left to right, std = {0.05, 0.1, 0.2, 0.3, 0.4, 0.5})
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(c) CUTI (from left to right, std = {0.05, 0.1, 0.2, 0.3, 0.4, 0.5})

Figure 7. Distribution of per-sample confidence of models on the source domain (CIFAR10), the target domain (STL10), and third-party
domains. (a) SL model. (b) NTL [49] model. (c) CUTI [50] model. Domain-averaged confidence is shown in Fig. 3 (a) in the main paper.

{D̂g
s}Gg=1. Specifically, the perturbation is performed by

adding Gaussian noise on the source domain images. We
plot results on 6 perturbation-based third-party domains,
with the standard derivation (std) of Gaussian noise =
{0.05, 0.1, 0.2, 0.3, 0.4, 0.5}.

In Fig. 7 (a), we show results of the SL model trained
on the source domain. We can see that the SL model makes
lower confident predictions when facing unseen distribution
shifts (e.g., the target domain and any third-party domains).
In Fig. 7 (b-c), we show results of NTL models (NTL [49]
and CUTI [50]). NTL models predict the target domain data

with a significantly high confidence. Moreover, when fac-
ing unseen distribution shifts (i.e., perturbation-based third-
party domains), NTL models also predict them with high
confidence. Particularly, with the distribution shifts increas-
ing (i.e., the std of the Gaussian noise increasing), NTL and
CUTI predict the third-party domain data with more confi-
dence. This is obviously opposite to the behavior of the SL
model, which makes more unconfident predictions when the
distribution shifts increase.

Results on more datasets. Furthermore, we present re-
sults on additional datasets to verify the existence of over-
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(a) MNIST→MNIST-M (b) SVHN→SYN-D (c) VisDA-T→VisDA-V

Figure 8. Domain-averaged confidence of SL/NTL/CUTI models on the source domain, the target domain, and third-party domains. (a)
Results on MNIST→MNIST-M. (b) Results on SVHN→SYN-D. (c) Results on VisDA-T→VisDA-V.
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(a) SL (from left to right, std = {0.05, 0.1, 0.2, 0.3, 0.4, 0.5})
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(b) NTL (from left to right, std = {0.05, 0.1, 0.2, 0.3, 0.4, 0.5})
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(c) CUTI (from left to right, std = {0.05, 0.1, 0.2, 0.3, 0.4, 0.5})

Figure 9. Prediction proportions of models on the source domain (CIFAR10), the target domain (STL10), and third-party domains. (a) SL
model. (b) NTL [49] model. (c) CUTI [50] model.

confident prediction. In Fig. 8, we show the domain-
averaged confidence of NTL models on MNIST→MNIST-
M, SVHN→SYN-D, and VisDA-T→VisDA-V. We can see
that NTL models also exhibit over-confident predictions on
third-party domains as well as the target domain. These
results confirm the wide existence of over-confident predic-
tion in NTL models.

A.2.2 Implicit target domain class

Briefly, the pattern of “implicit target domain class” means
that NTL models tend to predict the “implicit target domain
class” on third-party domains. In this section, we first show
more results on the proportion of different classes predicted
by NTL models. Then, we show results on other datasets to
further verify the existence of the pattern of “implicit target
domain class”.

More results of confidence distribution. As shown in
Fig. 9, we plot the proportion of different classes predicted
by SL and NTL models on the source domain Ds (CI-
FAR10), the target domain Dt (STL10), and perturbation-
based third-party domains {D̂g

s}Gg=1. The same as Ap-
pendix A.2.1, the perturbation is performed by adding

Gaussian noise on the source domain images, and we
plot results on 6 perturbation-based third-party domains,
with the standard derivation (std) of Gaussian noise =
{0.05, 0.1, 0.2, 0.3, 0.4, 0.5}.

In Fig. 9 (a), we show results of the SL model trained on
the source domain. We can see that the SL model makes
diverse predictions for the data in third-party domains and
the target domain. In Fig. 9 (b-c), we show results of NTL
models (NTL [49] and CUTI [50]). These NTL models, al-
though trained in a maximization term on the target domain
(Eq. (1) in the main paper), predict all the target domain data
to one class (denoted as the implicit target-domain class).
Moreover, for the third-party domain obtained by slightly
perturbing the source domain, the NTL model also tends to
predict the label of the implicit target-domain class.

Results on different datasets. We also show results on
other datasets, thus further verifying the impairment pattern
of implicit target-domain class. In Fig. 10, we show the
prediction proportions of models on MNIST→MNIST-M,
SVHN→SYN-D, and VisDA-T→VisDA-V. From the re-
sults, it is widely existent that NTL models tend to predict
the implicit target-domain class on third-party domains.
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(a) MNIST→MNIST-M (Left to Right: SL/NTL/CUTI)
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(b) SVHN→SYN-D (Left to Right: SL/NTL/CUTI)
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(c) VisDA-T→VisDA-V (Left to Right: SL/NTL/CUTI)

Figure 10. Prediction proportions of models on the source do-
main, the target domain, and third-party domains. (a) Results on
MNIST→MNIST-M. (b) Results on SVHN→SYN-D. (c) Results
on VisDA-T→VisDA-V. Each row contains the results of the SL
model, the NTL model, and the CUTI model (from left to right).

A.3. Loss Landscapes

To explore the causes of the above-mentioned two im-
pairment patterns, we separately explore the generaliza-
tion of the source domain learning task Tsrc and the non-
transferable task Ttgt by plotting the loss landscape on the
source domain and the target domain, respectively. In the
main paper, we show the results on CIFAR10→STL10 (i.e.,
the Fig. 4 in the main paper). In this section, we show more
evidence across different datasets to confirm our findings.
The loss landscapes of NTL models on MNIST→MNIST-
M, SVHN→SYN-D, and VisDA-T→VisDA-V are shown
in Fig. 11, Fig. 12, and Fig. 13, respectively. We can see
that across different datasets, NTL models (either NTL or
CUTI) are always optimized to an extremely sharp minima
on the source domain (the left landscape in each subfigure),
but are optimized to a relatively flat minima on the target
domain (the right landscape in each subfigure). These re-
sults further support the explanation that due to the dom-
inant generalization of non-transferable task, NTL models
tend to make target-domain-consistent predictions on third-
party domains.

B. Formulation Derivation
The total objective of TransNTL can be formulated as the
following bi-level optimization problem:

min
θ

max
∥T−1

θ ϵ∥2≤ρ
Lirft(θ + ϵ), (12)

where θ ∈ Rd is the model parameters, ϵ ∈ Rd is the per-
turbation, ρ is a hyper-parameter to control the perturbation
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Figure 11. Loss landscapes of models on MNIST→MNIST-M.
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Figure 12. Loss landscapes of models on SVHN→SYN-D.
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Figure 13. Loss landscapes of models on VisDA-T→VisDA-V.

magnitude, and the Tθ = diag(|θ1|, |θ2|, . . . , |θd|) ∈ Rd×d

is introduced to set element-wise adaptive weight for each
parameter in θ [31, 61].

To solve the minimax problem in Eq. (12), we first follow
[31] to find the optimal ϵ to maximize the Lirft(θ + ϵ):

ϵ∗ = argmax
∥T−1

θ ϵ∥2≤ρ

Lirft(θ + ϵ). (13)

By letting ϵ̃ = T−1
θ ϵ, the Eq. (13) can be converted to:

ϵ̃∗ = argmax
∥ϵ̃∥2≤ρ

Lirft(θ + Tθ ϵ̃). (14)

Specifically, to solve the maximization problem, we can ap-
proximate the Lirft(θ + Tθ ϵ̃) by using a first-order Taylor
expansion [27, 31, 61], thus we have:

ϵ̃∗ ≈ argmax
∥ϵ̃∥2≤ρ

Lirft(θ) + ϵ̃⊤Tθ∇Lirft(θ)

= argmax
∥ϵ̃∥2≤ρ

ϵ̃⊤Tθ∇Lirft(θ)

= ρ
Tθ∇Lirft(θ)

∥Tθ∇Lirft(θ)∥2
.

(15)

Finally, the optimal perturbation ϵ can be derived as:

ϵ∗ = Tθ ϵ̃ = ρ
T 2
θ∇Lirft(θ)

∥Tθ∇Lirft(θ)∥2
, (16)

which is the Eq. (9) in the main paper.

C. Complementary Experimental Details
In this section, we provide complementary experimental de-
tails. Appendix C.1 contains introduction of datasets. In



Appendix C.2, we present more implementation details, in-
cluding NTL baselines, backbones, NTL pre-training de-
tails, attacking details, evaluation metrics, and running en-
vironments. The implementations of NTL-based IP protec-
tion are provided in Appendix C.3.

C.1. Datasets

By following [49, 50], we conduct experiments on (1) Dig-
its, (2) CIFAR10 & STL10, and (3) VisDA-2017. We provide
more details of each dataset:
• Digits: We involve four Digit datasets, including: MNIST

[10], MNIST-M [13], SVHN [39], and SYN-D [43]. Each
dataset contains 10 digits collected from real scenes or
artificially constructed.

• CIFAR10 & STL10: Both CIFAR10 [30] and STL10 [7]
are 10-class classification datasets, which contain 6 ani-
mal categories and 4 transportation categories. Following
[49, 50], we run experiments on both CIFAR10→STL10
and STL10→CIFAR10.

• VisDA-2017: VisDA-2017 [42] contains a training set
VisDA-T and a validation set VisDA-V of 12 object
categories. Following [49, 50], we consider the non-
transferable task from VisDA-T to VisDA-V.

C.2. Implementation Details

NTL Baselines. We involve all of the previously pro-
posed NTL methods as baselines, including the first
method: NTL [49], and the state-of-the-art (SOTA) method:
CUTI [50]. We also use supervised learning (SL) as a base-
line. We provide brief introductions for each baseline:
• SL: We use a standard supervised learning pipeline with

cross-entropy loss.
• NTL: NTL [49] adds two statistical dependence relax-

ation terms on standard supervised learning to resist trans-
ferability: (i) maximizing the Kullback-Leible (KL) di-
vergence between target domain representation and la-
bel, and (ii) maximizing the maximum mean discrepancy
(MMD) between the distribution of source and target do-
main representations.

• CUTI: CUTI [50] improves the NTL by introducing
style transfer [23]. They augment target domain images
by transferring their styles to the source domain style,
thus obtaining a CUTI-domain. Then, CUTI trains a
model by maximizing the KL divergence between labels
and the representations on both the target domain and the
CUTI-domain.

Backbones. We follow the same backbones as previous
NTL methods [49, 50]. Specifically, we apply VGG-11 [45]
for Digits datasets, VGG-13 for CIFAR10 & STL10, and
VGG-19 for VisDA. All backbones are initialized as the
pre-trained version of ImageNet-1K [9]. Besides, in Ap-
pendix D.3, we adopt the experiments on more backbones
and analyze the influence of backbones for NTL.

NTL pre-training details. Following Wang et al. [49],
we randomly select 8,000 samples as training data and
1,000 samples as testing data. All images are resized to
64×64. For training SL models, we employ the SGD as an
optimizer with lr = 0.001 and set the batch size to 32. For
training NTL [49] and CUTI [50] models, we use their re-
leased code and the same hyperparameters settings reported
in their paper. Besides, the detailed implementations of
NTL-based ownership verification and applicability autho-
rization are illustrated in Appendix C.3.

Attacking details. For attacking NTL models, we train
the proposed TransNTL up to 200 epochs, with Adam serv-
ing as an optimizer. We set batchsize = 32 and learning
rate = 0.0001. The self-distillation weight λsd is set to 0.2,
and the magnitude ρ is set to 0.5. For simplicity, we only
consider a perturbation collection P with three perturba-
tion functions: P = {p1, p2, p3}, where p1(x) = x + δ1,
p2(x) = x ⊙ (1 + δ2), and p3(x) = x ⊗ k. Specifically,
δ1 and δ2 ∼ N (0, 0.1), and k is a Gaussian kernel with size
= 5. The influences of each hyper-parameter are shown in
Appendix D.1.

We also seek possible attack methods for comparison.
We involve SOTA backdoor defense methods and water-
mark removal methods, including: FTAL [1], RTAL [1],
FP [37], NAD [35], i-BAU [57], and FT-SAM [61]. We
re-implement the FTAL/RTAL and follow the implementa-
tions in [54] for other methods. All attack baselines are also
trained up to 200 epochs.

We mainly focus on the setting that all attacking methods
can access 10% source domain data. The results of other
proportions of available data are shown in Appendix D.2.

Evaluation metric. We show Top-1 classification accu-
racy (Acc) on the source domain and the target domain.
We also calculate the accuracy drop (compared to the pre-
trained model) on the source domain and the target domain.

Environment. Our code is implemented in Python
3.10.12 and PyTorch 2.0.1. All experiments are conducted
on a server running Ubuntu 20.04 LTS, equipped with an
NVIDIA GeForce RTX 4090 GPU.

C.3. NTL-based IP Protection

In this section, we introduce the detailed implementations
of NTL-based IP protection (i.e., ownership verification and
applicability authorization).

NTL-based ownership verification. Ownership verifica-
tion aims to verify the ownership of a deep learning model
[6, 32, 49]. NTL methods [49, 50] provide solutions for
ownership verification by triggering misclassification on the
target domain. Specifically, we add a pre-defined trigger
patch (only known by the model owner) on the original
dataset and see them as the target domain (e.g., Fig. 14 (b)).
The original data without the patch is regarded as the source



(a) CIFAR10 (b) CIFAR10 w/ patch
Figure 14. An example of NTL-based ownership verification. (a)
The original source data (e.g., CIFAR10) is regarded as the source
domain. (b) We add a pre-defined trigger patch on the source data
and see them as the target domain (e.g., CIFAR10 w/ patch).

(a) CIFAR10 w/ patch (b) CIFAR10

(c) AugCIFAR10 w/ patch (d) AugCIFAR10

Figure 15. An example of NTL-based applicability authorization.
(a) The original source data with the pre-defined trigger patch
(e.g., CIFAR10 w/ patch) is regarded as the source domain. (b-d)
We see the union of the original data (CIFAR10), the augmented
data with the patch (AugCIFAR10 w/ patch), and the augmented
data without the patch (AugCIFAR10) as the target domain.

domain (e.g., Fig. 14 (a)). It is worth noting that such a pre-
defined trigger patch can be controlled to be shallow so that
normal SL models trained on the original source domain can
still have good performance on the patched source domain.
Then, we train a deep learning model by using NTL method
[49, 50] on these two domains. After that, the trained model
will perform poorly on the data with the patch but have a
good performance on the data without the patch. Thus, by
observing the performance difference of a trained model on
the source domain data with and without the pre-defined
trigger patch, we can verify whether a deep learning model
belongs to the model owner.

NTL-based applicability authorization. Applicability
authorization aims at authorizing models to certain data for
preventing their usage on unauthorized data [49], which can
be solved by applying source-only NTL method [49, 50] to
restrict the model generalization ability to only the autho-
rized domain. Specifically, we add a pre-defined authorized
patch to the original data and see them as the source domain
(e.g., Fig. 15 (a)). We regard the union of the original data
(without the authorized patch), the augmented original data
with and without the authorized patch as the target domain
(e.g., Fig. 15 (b-d)). Then, we train a deep learning model
by using NTL method [49, 50] on these two domains. Af-

ter that, the trained model will only perform well on the
authorized data (i.e., the original data with the authorized
patch). For unauthorized data (e.g., the original data with-
out the authorized patch, the data from other domains with
or without the authorized patch), the trained model has a
poor performance. Therefore, we achieve the model appli-
cability authorization.

D. Additional Experimental Results
This section contains additional experiments and analyses.
In Appendix D.1, we analyze the influence of main hyper-
parameters in the proposed TransNTL. In Appendix D.2,
we conduct experiments on attacking NTL models by using
fewer source domain data. Appendix D.3 analyses the in-
fluence of backbones to NTL models. In Appendix D.4, we
show visualization results of attacked NTL models, includ-
ing confidence distributions, prediction proportions, and t-
SNE feature visualizations.

D.1. Influences of Hyperparameters

In this section, we analyze the influence of major hyper-
parameters in the proposed TransNTL, including the self-
distillation weight λsd, the magnitude ρ, and the perturba-
tion functions P .

Self-distillation weight. The self-distillation weight
λsd controls the importance of the loss term Lsd in the
impairment-repair fine-tuning framework. We change the
value of λsd from 0.001 to 1 and conduct experiments on
CIFAR10→STL10 and VisDA-T→VisDA-V, thus analyz-
ing its influence. As shown in Fig. 16, a too-small λsd
value will limit the recoverment of target domain perfor-
mance (e.g, NTL and CUTI on CIFAR10→STL10). For
VisDA-T→VisDA-V, the performance of TransNTL is gen-
erally not sensitive to the value of λsd.
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(a) CIFAR10→STL10 (b) VisDA-T→VisDA-V

Figure 16. Influence of the self-distillation weight λsd.

Magnitude. The hyperparameter ρ controls the magni-
tude of network-parameter-perturbations in the sharpness
term Lsharp. To explore its influence, we conduct experi-
ments on CIFAR10→STL10 and VisDA-T→VisDA-V with
different values of ρ. The results are shown in Fig. 17. In
general, TransNTL is not sensitive to the value of ρ (espe-
cially on VisDA-T→VisDA-V). On CIFAR10→STL10, a
too-large value of ρ will slightly degrade the source domain
performance of both NTL and CUTI.
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Figure 17. Influence of the magnitude ρ.

Perturbation functions. The collection P contains a
group of perturbation functions. These perturbation func-
tions are used for perturbing the source domain, thus ob-
taining third-party domains for repairing impairments. For
simplicity, the perturbation collection P in our main ex-
periments contains only three perturbation functions: P =
{p1, p2, p3}, where p1(x) = x+ δ1, p2(x) = x⊙ (1 + δ2),
and p3(x) = x ⊗ k. Specifically, δ1 and δ2 are Gaussian
noise and k is a Gaussian kernel. We analyze the influ-
ence of parameters in these perturbation functions, i.e., the
standard derivation of Gaussian noise and the kernel size.
Results are shown in Fig. 18, Fig. 19, and Fig. 20. We
can see that CIFAR10→STL10 is more sensitive to VisDA-
T→VisDA-V. When we set a too large value for each per-
turbation, the performance of TransNTL will be limited (es-
pecially for NTL [49]). This is because a too-large pertur-
bation leads to an over-worst third-party domain, which is
not necessary and even has negative influences.
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Figure 18. Influence of the additive perturbation (δ1).
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Figure 19. Influence of the multiplicative perturbation (δ2).
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Figure 20. Influence of the convolutional perturbation (k).

Table 6. Transferring the NTL with fewer source domain data.
The source domain accuracy and target domain accuracy (%) are
reported. The accuracy drop compared to the pre-trained model is
shown in brackets. The best result is highlighted in bold.

(a) 5% source domain data are available for attack

CIFAR10→STL10 VisDA-T→VisDA-V
(SL: 86.6 / 68.5) (SL: 95.2 / 34.0)

NTL CUTI NTL CUTI

Pre-train 84.1 / 10.1 84.3 / 9.9 94.0 / 5.5 93.3 / 10.3

FTAL 83.9 (-0.2)
10.1 (+0.0)

83.7 (-0.6)
9.9 (+0.0)

91.8 (-2.2)
5.6 (+0.1)

92.8 (-0.5)
10.4 (+0.1)

RTAL 80.5 (-3.6)
10.1 (+0.0)

80.8 (-3.5)
9.9 (+0.0)

91.5 (-2.5)
8.3 (+2.8)

90.6 (-2.7)
11.0 (+0.7)

FP 80.4 (-3.7)
10.1 (+0.0)

82.0 (-2.3)
9.7 (-0.2)

90.1 (-3.9)
6.4 (+0.9)

90.2 (-3.1)
12.3 (+2.0)

NAD 79.2 (-4.9)
17.3 (+7.2)

82.2 (-2.1)
9.9 (+0.0)

9.0 (-85.0)
7.7 (+2.2)

88.4 (-4.9)
18.5 (+8.2)

i-BAU 82.3 (-1.8)
10.1 (+0.0)

81.7 (-2.6)
10.9 (+1.0)

85.7 (-8.3)
5.6 (+0.1)

89.0 (-4.3)
10.7 (+0.4)

FT-SAM 78.3 (-5.8)
20.2 (+10.1)

54.7 (-29.6)
43.0 (+33.1)

8.5 (-85.5)
8.4 (+2.9)

9.0 (-84.3)
7.5 (-2.8)

TransNTL
(Ours)

80.1 (-4.0)
41.5 (+31.4)

77.2 (-7.1)
60.2 (+50.3)

87.5 (-6.5)
18.3 (+12.8)

89.8 (-3.5)
29.6 (+19.3)

(b) 1% source domain data are available for attack

CIFAR10→STL10 VisDA-T→VisDA-V
(SL: 86.6 / 68.5) (SL: 95.2 / 34.0)

NTL CUTI NTL CUTI

Pre-train 84.1 / 10.1 84.3 / 9.9 94.0 / 5.5 93.3 / 10.3

FTAL 83.5 (-0.6)
10.1 (+0.0)

83.8 (-0.5)
9.9 (+0.0)

93.4 (-0.6)
5.6 (+0.1)

92.3 (-1.0)
10.3 (+0.0)

RTAL 65.5 (-18.6)
10.1 (+0.0)

38.8 (-45.5)
10.1 (+0.2)

85.5 (-8.5)
5.9 (+0.4)

84.1 (-9.2)
9.4 (-0.9)

FP 79.3 (-4.8)
10.5 (+0.4)

81.0 (-3.3)
10.1 (+0.2)

23.8 (-70.2)
9.2 (+3.7)

88.1 (-5.2)
11.4 (+1.1)

NAD 76.8 (-7.3)
11.3 (+1.2)

82.8 (-1.5)
9.9 (+0.0)

9.0 (-85.0)
7.7 (+2.2)

64.1 (-29.2)
15.1 (+4.8)

i-BAU 72.7 (-11.4)
10.2 (+0.1)

74.5 (-9.8)
9.9 (+0.0)

72.4 (-21.6)
5.5 (+0.0)

80.4 (-12.9)
11.5 (+1.2)

FT-SAM 75.7 (-8.4)
24.6 (+14.5)

78.6 (-5.7)
17.7 (+7.8)

8.2 (-85.8)
9.3 (+3.8)

7.5 (-85.8)
7.2 (-3.1)

TransNTL
(Ours)

79.0 (-5.1)
33.1 (+23.0)

76.0 (-8.3)
57.2 (+47.3)

76.0 (-18.0)
12.9 (+7.4)

83.6 (-9.7)
26.2 (+15.9)

D.2. Attack with Fewer Source Domain Data

In this section, we analyze the influence of the amount of
available source domain data for attacking. The results of
using 5% and 1% source domain data to attack NTL mod-
els are shown in Tab. 6 (a) and (b), respectively. We can see
that when fewer source domain data are available, all at-
tacking methods face significant performance degradation.
Most attack baselines totally fail to recover the target do-
main performance with fewer source domain data avail-
able. Compared to attack baselines, the proposed TransNTL
still reaches the best attacking performance. However,
TransNTL also inevitably has poor attacking performance.
Specifically, TransNTL sacrifices more source domain per-



Table 7. Transfering the NTL with different backbones. We as-
sume 10% source domain data is available for attack. We report
the source domain accuracy (%) in blue and target domain accu-
racy (%) in red. The accuracy drop compared to the pre-trained
model is shown in brackets.

CIFAR10→STL10 VisDA-T→VisDA-V

VGG13bn ResNet34 VGG19bn ResNet50

SL 87.1 / 65.1 82.8 / 60.3 95.4 / 17.0 94.2 / 21.5

CUTI 87.6 / 14.5 82.4 / 10.1 96.5 / 10.6 89.4 / 9.6

TransNTL 85.3 (-2.3)
66.2 (+51.7)

80.7 (-1.7)
60.3 (+50.2)

92.1 (-4.4)
28.9 (+18.3)

89.2 (-0.2)
23.6 (+14.0)
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Figure 21. Domain-averaged confidence of models with different
backbones on the source domain (CIFAR10), the target domain
(STL10), and third-party domains.
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Figure 22. Prediction proportions of models with different
backbones on the source domain (CIFAR10), the target domain
(STL10), and a third-party domain.

formance to recover the target domain performance, and
the recovered target domain accuracies are lower than using
10% data for attacking. This is because when fewer data
are available, TransNTL is more easily overfitting to the
fewer source domain data and the derived third-party do-
mains, thus limiting both the source-domain-performance
maintenance and target-domain-performance recovering.

D.3. Influence of Backbone

Previous NTL methods [49, 50] mainly use VGG [45] as
backbone, and thus, we follow them to conduct major ex-
periments with VGG. In this section, we additionally ex-
plore the influence of backbone to NTL pre-training and at-
tacking. We consider two additional backbones: VGG with
batch normalization [28] (VGG-bn), and ResNet [16].

It is worth noting that through our experiments, VGG-bn
and ResNet trained by the NTL method [49] cannot reach
the expected performance. It fails to simultaneously main-
tain the source domain performance and degrade the target

domain performance. Thus, we only consider CUTI [50]
in this section. The results of pre-trained SL and CUTI
models are shown in Tab. 7. We further explore the gen-
eralization impairments and find that CUTI with VGG-bn
or ResNet still exhibits the same impairment patterns as
we observed on CUTI with VGG. Specifically, as shown
in Fig. 21, CUTI models still exhibit over-confident predic-
tions on third-party domains as well as the target domain.
One difference is that the prediction confidence of CUTI
models are significantly suppressed by the batch normaliza-
tion layers in VGG-bn and ResNet. Moreover, as shown
in Fig. 22, CUTI models also tend to predict the “implicit
target domain class” on third-party domains.

The attacking results on CIFAR10→STL10 and VisDA-
T→VisDA-V are shown in Tab. 7. We can see that the pro-
posed TransNTL is effective for attacking CUTI with dif-
ferent backbones. These results further indicate the risk of
using CUTI in practical IP protection.

D.4. Visualization Results

In this section, we present visualization results of attacked
NTL models, including the confidence distribution, predic-
tion proportions, and t-SNE feature visualization.

Confidence distribution. We first analyze the confi-
dence distribution of attacked NTL models. As shown in
Fig. 23, we plot the confidence distribution of both pre-
trained and attacked NTL models (NTL [49] and CUTI
[50]) on CIFAR10→STL10 and VisDA-T→VisDA-V. We
can see that pretrained NTL models, as we mentioned in
Appendix A.2, predict the third-party domain and the tar-
get domain with more confidence. In contrast, after being
attacked by TransNTL, such abnormal behaviors of NTL
models are repaired, with both the target domain and third-
party domain being predicted with lower confidence than
the source domain. The attacked NTL models thus behave
more like normal SL models (normal SL models, as shown
in Fig. 7 (a), make lower confident predictions when facing
unseen distribution shifts).

Prediction proportion. Another impairment pattern of
NTL models is the implicit target domain class. In Fig. 24,
we plot the proportion of different classes predicted by pre-
trained and attacked NTL models (NTL [49] and CUTI
[50]) on CIFAR10→STL10 and VisDA-T→VisDA-V. Af-
ter being attacked by TransNTL, we can see that the pattern
of predicting the implicit target domain class on third-party
domains is well-repaired. The attacked models make di-
verse predictions on third-party domains and the target do-
main, which is more similar to normal SL models.

t-SNE feature visualization. In addition, we plot the t-
SNE visualization [47] of SL models (Fig. 25) and NTL
models (Fig. 26 for CIFAR10→STL10 and Fig. 27 for



101 102 103

MaxLogit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
en

si
ty

Source
Target
Third-party

100 101 102

MaxLogit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
en

si
ty

Source
Target
Third-party

100 101 102 103 104

MaxLogit

0.0

0.5

1.0

1.5

2.0

D
en

si
ty

Source
Target
Third-party

100 101

MaxLogit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
en

si
ty

Source
Target
Third-party

(a) NTL on CIFAR10→STL10 (L: pretrained, R: attacked) (b) CUTI on CIFAR10→STL10 (L: pretrained, R: attacked)
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Figure 23. Prediction proportions of models on the source domain, the target domain, and third-party domains.
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(a) NTL on CIFAR10→STL10 (L: pretrained, R: attacked) (b) CUTI on CIFAR10→STL10 (L: pretrained, R: attacked)
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Figure 24. Prediction proportions of models on the source domain, the target domain, and third-party domains.

(a) CIFAR10→STL10 (b) VisDA-T→VisDA-V

Figure 25. t-SNE visualization of SL models. Opaque dots repre-
sent source domain features, and transparent dots represent target
domain features.

VisDA-T→VisDA-V). Particularly, different color repre-
sents different class. Opaque dots in each figure represent
source domain features, and transparent dots represent tar-
get domain features. As shown in Fig. 25, the target do-

main features of SL models overlap with the source domain
features and maintain a certain discriminability. For pre-
trianed NTL models, as shown in Fig. 26 (a)(c) and Fig. 27
(a)(c), the source and target domain features are clearly sep-
arated by a certain distance. The source domain features
are discriminable, but the target domain features are ran-
domly distributed. Thus, the source-to-target generalization
is limited, and the target domain performance is degraded
to the random-classification accuracy. After being attacked,
as shown in Fig. 26 (b)(d), Fig. 27 (b)(d), the transferability
barriers are successfully broken. Due to the impairment re-
pairing, the target domain features are re-distributed around
the source domain features. Like SL models, these target
domain features are overlapped with the source domain fea-
tures and maintain a certain discriminability. Thus, the tar-
get domain performance is recovered.



(a) pretrained NTL (b) attacked NTL

(c) pretrained CUTI (d) attacked CUTI

Figure 26. t-SNE visualization of NTL models (NTL [49] and
CUTI [50]) on CIFAR10→STL10. Opaque dots in each figure
represent source domain features, and transparent dots represent
target domain features.

(a) pretrained NTL (b) attacked NTL

(c) pretrained CUTI (d) attacked CUTI

Figure 27. t-SNE visualization of NTL models (NTL [49] and
CUTI [50]) on VisDA-T→VisDA-V. Opaque dots in each figure
represent source domain features, and transparent dots represent
target domain features.

E. More Analyses of Defending
In this section, we present more visualization results of the
proposed defending method. Briefly, the proposed defense
method aims at pre-fixing the identified bugs by leveraging
TransNTL in NTL training, thus eliminating the risk of NTL
models in practical deployment.

Following the defending experiments in the main pa-
per (i.e., Tab. 5 in the main paper), we consider the CUTI
[50] and its robust version obtained by our defense strat-
egy: R-CUTI. In Fig. 28, we plot the confidence distribu-

tion and predicted proportion of R-CUTI on each domain.
We can see that both impairment patterns on third-party do-
mains are pre-repaired. Specifically, to implement the non-
transferable learning, R-CUTI still predicts the target do-
main data to one class with high confidence, but for third-
party domain data, R-CUTI has SL-like normal predictions.
Moreover, the t-SNE visualization of features in each do-
main is shown in Fig. 29 (in this figure, different domain
has different color). For the original CUTI (Fig. 29 (a)), the
distribution of the third-party domain is overlapped with the
target domain, thus leaving bugs for the third-party-domain-
based TransNTL attack. In contrast, as shown in Fig. 29 (b),
the R-CUTI pre-fix such bugs, with the target domain distri-
bution being consistent with the source domain. As a result,
the R-CUTI can effectively resist the TransNTL attack.
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Figure 28. Visualization of (a) confidence distribution (b) predic-
tion proportion of R-CUTI on the source domain, the target do-
main, and third-party domains

(a) CUTI (b) R-CUTI

Figure 29. t-SNE visualization of (a) CUTI and (b) R-CUTI on the
source domain, the target domain, and third-party domains.
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