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A. Implementation Details
Architecture details. Our RALF consists of four modules:
the image encoder, retrieval augmentation, layout decoder,
and optional constraint encoder. Table A provides the num-
ber of parameters of these modules.
Image encoder consists of ResNet-50-FPN [9] and the Trans-
former encoder. We obtain the saliency map by the off-the-
shelf saliency detection method [13, 14] and combine them
via a pixel-wise maximum operation following the approach
in DS-GAN [3].
Retrieval augmentation. We implement the retrieval part
using faiss [6]. The layout encoder for retrieved layouts con-
sists of the Transformer encoder and a feed-forward network,
which adapts the feature map size of retrieved layouts to
the size of the layout decoder. Before training, we pre-train
the layout encoder for each dataset and extract features over
each training dataset to construct the retrieval database. We
note that the parameters of the layout encoder (1.59M) are
excluded from the total parameters of RALF since they are
set with the retrieval database.

To calculate a cross-attended feature, the image feature
acts as the query, and the retrieved layout feature serves as
both the key and value. We use multi-head attention [16]
as our cross-attention layer. The effectiveness of the cross-
attended feature is demonstrated in the comparison of sce-
narios (B) and (C) in Table 6 in the main paper.
Layout decoder. We employ the Transformer decoder. The
configurations of the Transformer layers are as follows: 6
layers, 8 attention heads, 256 embedding dimensions, 1,024
hidden dimensions, and 0.1 dropout rate. The size of bins
for the layout tokenizer is set to 128. In the inference phase,

Module #Params

Image encoder (ResNet50) 25.02 M
Image encoder (Trans Enc) 4.74 M
Constraint encoder 4.88 M
Retrieval augmentation 1.59 M
Layout decoder 6.59 M

Total 42.82 M

Table A. The number of parameters of each module.

for the relationship task, we use a decoding space restriction
mechanism [5], which aims to prune the predicted tokens
that violate a user-specified constraint.

Training details. We implement RALF in PyTorch [12]
and train for 50 and 70 epochs with AdamW optimizer [10]
for the PKU and CGL datasets, respectively. The training
time is about 4 hours and 20 minutes for the PKU dataset
and 18 hours for the CGL dataset on a single A100 GPU. We
divide the learning rate by 10 after 70% of the total epoch
elapsed. We set the batch size, learning rate, weight decay,
and gradient norm to 32, 10−4, 10−4, and 10−1, respectively.

Testing details. We generate layouts on three independent
trials and report the average of the metrics. We use top-k
sampling for all the models that rely on sampling in logit
space. We set k and temperature to 5 and 1.0, respectively.

Other baselines. For the training of baseline methods, we
follow the original training setting referring to their papers
as much as possible. There are some exceptions for a fair
comparison. For example, the number of embedding dimen-
sions and hidden dimensions in Transformer is adjusted to
roughly match the number of parameters for each model.
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Figure A. Comparison of inpainting for the dataset preprocessing.

We use ResNet-50-FPN as the image encoder for all of our
baseline methods.

B. Dataset Preprocessing
We demonstrate the importance of adequately preprocessing
annotated poster images in Fig. A. Layout annotations in
existing datasets sometimes exhibit inaccuracies for some
underlying factors, including the semi-automatic collection
process using object detection models [3] as shown in (a)
and (b). The inaccuracy severely harms the image inpainting
quality when we fully depend on the annotations, as shown
in (c). To cope with the inaccuracy, we slightly dilate the
target region for inpainting and get better results with fewer
artifacts, as shown in (d). We show more examples in Fig. B.
We observe that about 20% of the original inpainted images
in PKU contain significant artifacts.

We plot the number of layout elements for each poster
in Fig. C. Although we filter out posters with more than 11
layout elements, it only accounts for about 2% of the original
dataset.

C. Additional Results
Spatial distribution shift. Figure D shows the visual com-
parison of canvases and saliency maps between the test and
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Figure B. Comparison of inpainting for the dataset preprocessing.
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Figure C. Number of elements per layout in the original PKU
dataset. A red dashed line indicates the maximum number of
elements we use.

unannotated test split of CGL. We see that the proportion of
space occupied by the saliency map is different according
to the different values of Mean. As a result, this difference
causes the performance degradation in CGL.

Inference speed. Table B compares inference speeds.
Compared to Autoreg Baseline, the total inference speed
of RALF increases by about 35%. While the latency is
produced, our RALF can enhance the quality of generation.



Test split

Unannotated test split

Averaged
saliency map 

Averaged
saliency map 

Mean=0.375

Mean=0.458

Figure D. Visual comparison of canvases and saliency maps be-
tween the test and unannotated test split of the CGL dataset. Can-
vases are randomly selected from each split. The averaged saliency
map is produced by computing the spatial average of all saliency
maps of each split. Mean represents the spatial average of all
saliency maps of each split.

Impact of a saliency map. We compare scenarios with and
without a saliency map in Table C since manually creating an
inaccurate saliency map is unreasonable. The result shows
that the presence of it has a negligible effect on performance.
While we follow previous works [3, 17] to use a saliency
map, we might be able to simplify our image encoder.

Comprehensive quantitative comparison. We addition-
ally adopt five metrics.

Graphic metrics. Alignment (Align ↓) [7, 8] computes
how well the elements are aligned with each other. For
detailed calculation, please refer to [7, 8]. Loose underlay ef-
fectiveness (UndL ↑) [3] also calculates the proportion of the
total area of valid underlay elements to the total of underlay
and non-underlay elements. Note that we define this loose
metric as UndL ↑ to distinguish it from the strict underlay
effectiveness UndS ↑ introduced in the main manuscript.

CGL-GAN LayoutDM† Autoreg
Baseline

RALF

DreamSim Retrieval Network Total

Time [s] 0.012 0.495 0.225 0.022 0.031 0.252 0.305

Table B. Inference time comparison on the PKU dataset. RALF
consists of three components – feature extraction (DreamSim), lay-
out retrieval (Retrieval), and layout generation (Network). The total
inference time (Total) is the sum of these individual components.

Method Saliency map Occ ↓ Rea ↓ Und ↑ Ove ↓ FID ↓
Autoreg Baseline 0.132 0.0169 0.45 0.021 11.78
Autoreg Baseline ✓ 0.134 0.0165 0.44 0.018 13.51

RALF 0.122 0.0129 0.90 0.007 3.97
RALF ✓ 0.119 0.0129 0.92 0.008 3.45

Table C. Quantitative results without and with a saliency map.

Density (Den ↑) and Coverage (Cov ↑) [11] compute fidelity
and diversity aspects of the generated layouts against ground-
truth layouts. Please refer to [11] for more details.

Content metrics. Salient consistency (Rshm ↓) [17] com-
putes the Euclidean distance between the output logits of
the canvases with or without layout regions masked using a
pre-trained VGG16 [15].

Tables D and E present the quantitative result on the
annotated test split without user constraints on the PKU
and CGL datasets, respectively. RALF notably improves
Density and Coverage metrics, indicating that RALF can
generate better layouts in terms of both fidelity and diversity.
RALF does not achieve the best score regarding Rshm and
Alignment. However, these metrics may not be very reliable
since the best scores for these metrics largely deviate from
the scores for Real-Data, unlike other metrics.

Retrieval augmentation for baseline method. Table F
shows the results of retrieval augmentation for CGL-GAN
and LayoutDM†. Even for constrained generation tasks,
retrieval augmentation achieves a better quality of generation
for other generators on almost all metrics.

Impact on changing #Dim in layout decoder. Table G
provides the results of RALF and Autoreg Baseline while
changing the number of parameters in the layout decoder.
We modify the number of features (#Dim) and hidden dim
to four times the number of #Dim. RALF’s performance
peaks when #Dim is 256. Autoreg Baseline’s performance
improves as #Dim increases, but the model with #Dim=768
still clearly underperforms RALF with #Dim=256. Thus,
retrieval augmentation enables us to use a relatively compact
network. This result aligns with the trend observed in other
domains, such as image generation [1]. We conjecture that
slight performance degradation as we increase #Dim over
256 in RALF is caused by overfitting as we watch loss curves
for training and validation.



Visual comparison on constrained generation. Figures E
and F provide the qualitative comparisons of constrained
generation for the PKU and CGL datasets, respectively. The
results demonstrate that our RALF successfully generates
well-fitted, non-overlapping, and rational layouts even in
constrained generation tasks.

References
[1] Andreas Blattmann, Robin Rombach, Kaan Oktay, and Björn

Ommer. Retrieval-Augmented Diffusion Models. In NeurIPS,
2022. 3

[2] Yunning Cao, Ye Ma, Min Zhou, Chuanbin Liu, Hongtao Xie,
Tiezheng Ge, and Yuning Jiang. Geometry Aligned Varia-
tional Transformer for Image-conditioned Layout Generation.
In ACM MM, 2022. 5

[3] Hsiao Yuan Hsu, Xiangteng He, Yuxin Peng, Hao Kong, and
Qing Zhang. PosterLayout: A New Benchmark and Approach
for Content-Aware Visual-Textual Presentation Layout. In
CVPR, 2023. 1, 2, 3, 5

[4] Naoto Inoue, Kotaro Kikuchi, Edgar Simo-Serra, Mayu Otani,
and Kota Yamaguchi. LayoutDM: Discrete Diffusion Model
for Controllable Layout Generation. In CVPR, 2023. 5

[5] Z. Jiang, J. Guo, S. Sun, H. Deng, Z. Wu, V. Mijovic, Z. Yang,
J. Lou, and D. Zhang. LayoutFormer++: Conditional Graphic
Layout Generation via Constraint Serialization and Decoding
Space Restriction. In CVPR, 2023. 1

[6] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale
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Method
PKU

Content Graphic

Occ ↓ Rea ↓ Rshm ↓ Align ↓ UndL ↑ UndS ↑ Ove ↓ Den↑ Cov↑ FID↓
Real-Data 0.112 0.0102 13.94 0.00379 0.99 0.99 0.0009 0.95 0.95 1.58
Top1-Retrieval 0.212 0.0218 16.33 0.00371 0.99 0.99 0.002 1.07 0.97 1.43
CGL-GAN [17] 0.138 0.0164 14.32 0.00311 0.81 0.41 0.074 0.70 0.68 34.51
DS-GAN [3] 0.142 0.0169 14.95 0.00347 0.89 0.63 0.027 1.10 0.82 11.80
ICVT [2] 0.146 0.0185 13.92 0.00228 0.63 0.49 0.318 0.35 0.40 39.13
LayoutDM† [4] 0.150 0.0192 13.06 0.00298 0.64 0.41 0.190 0.74 0.59 27.09
Autoreg Baseline 0.134 0.0164 14.43 0.00192 0.79 0.43 0.019 1.13 0.79 13.59
RALF (Ours) 0.119 0.0129 14.11 0.00267 0.98 0.92 0.008 1.25 0.97 3.45

Table D. Unconstrained generation results on the PKU test split.

Method
CGL

Content Graphic

Occ ↓ Rea ↓ Rshm ↓ Align ↓ UndL ↑ UndS ↑ Ove ↓ Den↑ Cov↑ FID↓
Real-Data 0.125 0.0170 14.33 0.00240 0.99 0.98 0.0002 0.93 1.00 0.79
Top1-Retrieval 0.214 0.0266 16.02 0.00254 0.99 0.99 0.0005 1.01 0.90 0.93
CGL-GAN [17] 0.157 0.0237 14.12 0.00320 0.67 0.29 0.161 0.31 0.28 66.75
DS-GAN [3] 0.141 0.0229 14.85 0.00257 0.71 0.45 0.057 0.64 0.40 41.57
ICVT [2] 0.124 0.0205 13.40 0.00319 0.55 0.42 0.310 0.16 0.22 65.34
LayoutDM† [4] 0.127 0.0192 14.15 0.00242 0.92 0.82 0.020 0.87 0.93 2.36
Autoreg Baseline 0.125 0.0190 14.22 0.00234 0.97 0.92 0.011 1.05 0.91 2.89
RALF (Ours) 0.125 0.0180 14.26 0.00236 0.99 0.98 0.004 1.09 0.96 1.32

Table E. Unconstrained generation results on the CGL test split.



Task Method Retrieval
PKU CGL

Content Graphic Content Graphic

Occ ↓ Rea ↓ Und ↑ Ove ↓ FID↓ Occ ↓ Rea ↓ Und ↑ Ove ↓ FID↓

Unconstraint

Real Data 0.112 0.0102 0.99 0.0009 1.58 0.125 0.0170 0.98 0.0002 0.79
Top-1 Retrieval 0.212 0.0218 0.99 0.002 1.43 0.214 0.0266 0.99 0.0005 0.93

CGL-GAN 0.138 0.0164 0.41 0.074 34.51 0.157 0.0237 0.29 0.161 66.75
CGL-GAN ✓ 0.144 0.0164 0.63 0.039 13.28 0.172 0.0245 0.42 0.157 60.67
LayoutDM† 0.150 0.0192 0.41 0.190 27.09 0.127 0.0192 0.82 0.020 2.36
LayoutDM† ✓ 0.123 0.0144 0.51 0.091 10.03 0.126 0.0187 0.85 0.019 1.97

C → S + P

CGL-GAN 0.132 0.0158 0.48 0.038 11.47 0.140 0.0213 0.65 0.047 23.93
CGL-GAN ✓ 0.140 0.0153 0.66 0.030 10.23 0.138 0.0202 0.82 0.021 10.01
LayoutDM† 0.152 0.0201 0.46 0.172 20.50 0.127 0.0192 0.79 0.026 3.39
LayoutDM† ✓ 0.121 0.0141 0.55 0.088 9.02 0.127 0.0189 0.81 0.026 3.36

C+ S → P

CGL-GAN 0.129 0.0155 0.48 0.043 9.11 0.129 0.0202 0.75 0.027 6.96
CGL-GAN ✓ 0.146 0.0178 0.57 0.036 7.74 0.135 0.0207 0.78 0.020 6.01
LayoutDM† 0.143 0.0185 0.45 0.122 24.90 0.127 0.0190 0.82 0.021 2.18
LayoutDM† ✓ 0.123 0.0144 0.59 0.071 10.68 0.127 0.0188 0.83 0.020 1.77

Completion

CGL-GAN 0.146 0.0175 0.42 0.076 27.18 0.174 0.0231 0.21 0.182 78.44
CGL-GAN ✓ 0.146 0.0169 0.71 0.039 12.46 0.155 0.0230 0.46 0.102 48.82
LayoutDM† 0.135 0.0175 0.35 0.134 21.70 0.127 0.0192 0.76 0.020 3.19
LayoutDM† ✓ 0.120 0.0143 0.45 0.071 12.96 0.126 0.0189 0.79 0.018 2.55

Refinement

CGL-GAN 0.122 0.0141 0.39 0.090 6.40 0.124 0.0182 0.86 0.024 1.20
CGL-GAN ✓ 0.129 0.0157 0.37 0.072 4.91 0.133 0.0194 0.85 0.013 1.56
LayoutDM† 0.115 0.0121 0.57 0.008 2.86 0.127 0.0188 0.75 0.018 1.98
LayoutDM† ✓ 0.115 0.0121 0.57 0.007 2.91 0.126 0.0186 0.76 0.019 1.79

Table F. Retrieval augmentation for CGL-GAN and LayoutDM† on the PKU and CGL test split for unconstrained and constrained generation.

Method #Dim #ParamsDec
PKU CGL

Content Graphic Content Graphic

Occ ↓ Rea ↓ Und ↑ Ove ↓ FID↓ Occ ↓ Rea ↓ Und ↑ Ove ↓ FID↓
Autoreg Baseline 128 2.55M 0.146 0.0184 0.41 0.030 18.86 0.127 0.0196 0.86 0.013 3.60
RALF 0.123 0.0141 0.71 0.007 4.14 0.125 0.0180 0.97 0.005 1.27

Autoreg Baseline♢ 256 6.59M 0.134 0.0165 0.44 0.018 13.51 0.125 0.0190 0.92 0.011 2.90
RALF♢ 0.119 0.0129 0.92 0.008 3.45 0.125 0.0180 0.98 0.004 1.31

Autoreg Baseline 512 19.46M 0.128 0.0150 0.57 0.011 10.85 0.122 0.0184 0.95 0.009 2.74
RALF 0.122 0.0131 0.94 0.010 3.61 0.128 0.0182 0.97 0.004 1.72

Autoreg Baseline 768 38.82M 0.122 0.0150 0.70 0.012 8.46 0.124 0.0183 0.95 0.008 2.26
RALF 0.126 0.0131 0.93 0.008 3.19 0.131 0.0187 0.97 0.004 1.72

Table G. Qualitative result of varying network parameters on unconstrained generation metrics on the PKU and CGL test split. We modify
the number of features (#Dim) in the input of cross-attention layers and the sequence to the decoder layer. #ParamsDec indicates the number
of parameters of the layout decoder. ♢ represents the setting of our experiments in the main manuscript.
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Figure E. Visual comparison of constrained generation with baselines on the PKU annotated test split.
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Figure F. Visual comparison of constrained generation with baselines on the CGL annotated test split.
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