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Figure 1. Example of multi-view camera setups. Left: multi-
view classification jointly considers multiple camera views (blue
dots) to identify the object. Right: multi-view detection estimates
pedestrian occupancy from multiple cameras (blue FoV maps)
over bird’s-eye-view (bottom colored image). For both classifi-
cation and detection tasks, due to hardware constraints, camera
layouts are usually pre-defined.

1. MVSelect Architecture

As shown in Fig. 2, we design MVSelect architecture d (-)
with two branches. The first branch expands the camera
selection result s$™ € RY into D-dimensional learnable
camera embeddings, and then sums over the selected em-
beddings to formulate a hidden vector. The second branch
processes the observation sgbs € RP, and converts that
into another hidden vector. By combining the two hidden
vectors, MVSelect outputs the action-value @ (s, a), which
measures the expected cumulative rewards for taking an ac-
tion a in a given state s.
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Figure 2. MV Select architecture.

2. Additional Details on Experimental Setup

Datasets. We verify the performance of the proposed ap-

proach on multiview classification and detection tasks.
ModelNet40 is a subset of 3D CAD models in ModelNet

[17]. Tt includes 40 categories of synthetic 3D objects with

9,843 training models and 2,468 test models. For multiview
classification experiments, we use two different configu-
rations: the /2-view circular configuration from MVCNN
[13] and the 20-view dodecahedral configuration from Ro-
tationNet [9].

ScanObjectNN is a 3D dataset scanned from real-world
objects. Introduced by Uy et al. [15], it contains 2902 3D
objects across 15 categories. Traditionally used for point
cloud classification, we re-purpose this dataset for multi-
view classification by rendering textured meshes from the
point clouds and use the same 12 views setup as Model-
Net40 [13, 17].

Wildtrack [2] is a real-world multiview detection dataset
with 7 camera views covering a 12 x 36 square meter area,
which is represented as a 480 x 1440 grid from BEV. It
contains 360 frames for training and 40 frames for testing.

MultiviewX [8] is a synthetic multiview detection dataset
created using the Unity [14] engine. It has 6 cameras with
higher pedestrian density than Wildtrack. It focuses on a
16 x 25 square meter area, which is discretized into 640 x
1000 BEV grid. Like Wildtrack, MultiviewX also contains
360 training frames and 40 testing frames.

Evaluation metrics. For multiview classification, we
follow previous methods [6, 9, 11, 16, 19, 20] and report
instance-averaged accuracy as the primary indicator.

Regarding multiview detection, we report the following
metrics: multi-object detection accuracy (MODA), multi-
object detection precision (MODP), precision, and recall
[10]. During evaluation, we first compute false posi-
tives (FP), false negatives (FN), and true positives (TP),
and then use them to calculate the metrics. Specifically,
MODA is calculated as 1 — FPJTF N where GT is the num-
ber of ground truth pedestrians. MODP is calculated as
2z l_dm[di;‘lflhm]/ thres  where dist is the distance from the
estimated pedestrian location to its ground truth and thres
is the threshold of 0.5 meters. MODP indicates the BEV
localization accuracy. Precision and recall are calculated as

TP and I, respectively.

TP+FP GT* )
All metrics are reported in percentages.

3. Evaluation against State-of-the-Arts

In Table 1, we compare our implementations of MVCNN
[13] and MVDet [8] with their original implementations and
state-of-the-art methods. On 3 datasets and 4 settings, our
implementations outperform the original implementations
and achieve competitive results. Although our focus is not
on improving these classic architectures, the results indicate
that they can still serve as strong baselines.



Table 1. Performance comparison with state-of-the-art multiview classification and multiview detection methods. Results are averaged
from 5 runs. * indicates that the camera poses are dynamically chosen and do not follow a pre-defined layout. We also report the MV Select

and task network joint training results in the last line.

ModelNet40 [17] Wildtrack [2] MultiviewX [8]

12 views | 20 views MODA MODP prec. recall | MODA MODP prec. recall
MVCNN [13] 90.1 92.0 RCNN & cluster [18] 113 18.4 68 43 18.7 46.4 63.5 439
GVCNN [4] 92.6 - POM-CNN [5] 23.2 30.5 75 55 - - - -
MHBN [20] 93.4 - DeepMCD [3] 67.8 64.2 85 82 70 73 85.7 83.3
RotationNet [9] - 94.7 Deep-Occlusion [1] 74.1 53.8 95 80 75.2 54.7 97.8 80.2
RelationNet [19] 94.3 97.3 MVDet [8] 88.2 75.7 94.7 93.6 83.9 79.6 96.8 86.7
ViewGCN [16] - 97.6 SHOT [12] 90.2 76.5 96.1 94.0 88.3 82.0 96.6 91.5
MVTN* [6] 93.8 93.5 MVDeTr [7] 91.5 82.1 97.4 94.0 93.7 91.3 99.5 94.2
MVCNN (our implementation) 94.5 96.5 MVDet (our implementation) 90.0 80.9 95.4 94.5 93.0 90.3 98.7 94.4
MVCNN + MVSelect (2 views) 94.3 94.4 MVDet + MVSelect (3 views) 88.6 79.9 93.3 94.2 88.1 89.8 98.2 89.7

Compared to state-of-the-arts that use full N cameras,
joint training the tasks network along with MVSelect gives
competitive results while only using 7' = 2 or T' = 3 cam-
eras for multiview classification and multiview detection.
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