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1. Method

1.1. Base Model

In this paper, We choose the classic one-stream RGB-based
model, e.g., OSTrack [16], as the pre-trained model. It is
composed of a ViT [4] backbone and a prediction head. The
ViT backbone includes a Patch Embed Layer and multiple
ViT blocks, which have been explained in detail in the pre-
ceding body sections and will not be reiterated here.

Patch Embed Layer. The input of our proposed SD-
STrack consists of a pair of template frames and a pair
of search frames, i.e., one RGB template frame zrgb

image ∈
RHz×Wz×3, one RGB search frame xrgb

image ∈ RHx×Wx×3,
one X-modal template frame zX

image ∈ RHz×Wz×3, and one
X-modal search frame xX

image ∈ RHx×Wx×3. They are first
split and flattened into sequences of patches zrgb , zX ∈
RNz×(3P 2) and xrgb ,xX ∈ RNx×(3P 2), where P ×P is the
resolution of each patch, and Nz = HzWz

P 2 , Nx = HxWx

P 2 are
the number of patches of template and search region respec-
tively. Then, two trainable linear projection layers with pa-
rameter Ergb ∈ R(3P

2)×D and EX ∈ R(3P
2)×D are used to

project zrgb,xrgb and zX,xX into D dimension latent space
and the output of this projection is commonly called patch
embeddings. After that, learnable 1D position embeddings
Pz ∈ RNz×D and Px ∈ RNx×D are added to the template
patch embeddings ẑrgb, ẑX ∈ RNz×D and search patch em-
beddings x̂rgb, x̂X ∈ RNx×D seperately. The above pro-
cessing can be represented as follows:

ẑrgb =
[
z1rgbErgb; z

2
rgbErgb; . . . ; z

Nz

rgb Ergb

]
+Pz (1)

ẑX =
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z1XEX; z

2
XEX; . . . ; z
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X EX

]
+Pz (2)
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1.2. Complementary Masked Patch Distillation

1.2.1 Random Complementary Patch Mask (RCPM)

During training, we apply a random complementary patch
masking strategy to the patch embeddings to obtain masked
patch embeddings. Specifically, after obtaining the patch
embeddings in the Patch Embed Layers as described in
Sec. 1.1, we randomly occlude 30% of the RGB patch em-
beddings ẑrgb, x̂rgb. Similarly, we randomly occlude 30%
of the X-modal embeddings ẑX, x̂X, but if both RGB and
X modalities occlude the same positions, we remove the
X-modal occlusion in the positions to ensure that at least
one modality is available. Hence, we obtain masked patch
embeddings ˆ̃zrgb, ˆ̃zX ∈ RNz×D, and ˆ̃xrgb, ˆ̃xX ∈ RNx×D.
Then, we also utilize the position embeddings Pz and Px to
incorporate position information into the masked patch em-
beddings. During training, the process of the masked data
is the same as that of the clean data in the model.

2. Experiments
2.1. Robustness performance

To comprehensively analyze the robustness of our SD-
STrack, we compared its performance with previous meth-
ods on various challenging attributes on the LasHeR [7] and
VisEvent [11] test sets.

LasHeR. The attribute-based performance results of our
method on the LasHeR [7] test set are presented in Tab. 1.
Our SDSTrack achieves state-of-the-art performance in the
majority of attributes. Specifically, in sequences involving
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SGT++ CAT FANet APFNet STARKS50 TransT OSTrack ProTrack ViPT SDSTrack
[5] [6] [18] [12] [13] [1] [16] [15] [17] (ours)

NO 0.530/0.325 0.654/0.430 0.597/0.405 0.667/0.467 0.610/0.485 0.700/0.522 0.728/0.562 0.754/0.580 0.876/0.684 0.876/0.708
PO 0.341/0.240 0.418/0.295 0.415/0.292 0.473/0.345 0.426/0.344 0.494/0.373 0.487/0.393 0.505/0.396 0.624/0.503 0.634/0.506
TO 0.307/0.211 0.361/0.260 0.341/0.250 0.417/0.314 0.386/0.308 0.433/0.327 0.403/0.329 0.439/0.342 0.576/0.461 0.604/0.478
HO 0.147/0.167 0.226/0.234 0.167/0.227 0.271/0.277 0.330/0.340 0.346/0.338 0.299/0.318 0.402/0.386 0.473/0.438 0.589/0.527
MB 0.324/0.207 0.398/0.266 0.400/0.260 0.459/0.328 0.427/0.337 0.477/0.350 0.465/0.370 0.524/0.395 0.573/0.459 0.599/0.475
LI 0.296/0.205 0.315/0.226 0.330/0.235 0.418/0.308 0.296/0.252 0.338/0.266 0.331/0.282 0.424/0.334 0.498/0.412 0.541/0.438
HI 0.422/0.241 0.525/0.357 0.527/0.355 0.604/0.412 0.443/0.342 0.496/0.344 0.527/0.407 0.595/0.444 0.679/0.542 0.694/0.551

AIV 0.179/0.143 0.226/0.190 0.188/0.184 0.321/0.262 0.203/0.208 0.224/0.230 0.234/0.222 0.304/0.267 0.375/0.350 0.543/0.482
LR 0.373/0.216 0.424/0.252 0.432/0.260 0.461/0.294 0.376/0.267 0.450/0.297 0.435/0.312 0.462/0.321 0.564/0.416 0.575/0.425

DEF 0.356/0.274 0.383/0.306 0.331/0.282 0.458/0.368 0.432/0.363 0.542/0.433 0.479/0.406 0.519/0.428 0.674/0.557 0.695/0.563
BC 0.318/0.237 0.398/0.298 0.402/0.295 0.449/0.337 0.427/0.343 0.471/0.361 0.480/0.387 0.498/0.388 0.649/0.518 0.644/0.513
SA 0.346/0.246 0.374/0.265 0.391/0.282 0.428/0.317 0.399/0.329 0.438/0.346 0.445/0.370 0.451/0.363 0.574/0.465 0.574/0.463
CM 0.364/0.238 0.419/0.294 0.420/0.293 0.477/0.351 0.439/0.349 0.479/0.357 0.486/0.389 0.541/0.416 0.621/0.500 0.636/0.507
TC 0.327/0.224 0.370/0.262 0.374/0.264 0.431/0.316 0.393/0.315 0.457/0.341 0.439/0.352 0.458/0.358 0.573/0.460 0.577/0.462
FL 0.325/0.189 0.387/0.226 0.353/0.207 0.376/0.279 0.399/0.322 0.453/0.335 0.438/0.353 0.520/0.386 0.591/0.465 0.598/0.465
OV 0.217/0.245 0.260/0.230 0.247/0.236 0.364/0.342 0.528/0.464 0.623/0.514 0.747/0.639 0.548/0.458 0.762/0.650 0.700/0.606
FM 0.330/0.237 0.399/0.291 0.389/0.285 0.451/0.339 0.433/0.357 0.501/0.386 0.491/0.403 0.520/0.414 0.631/0.514 0.656/0.528
SV 0.364/0.250 0.444/0.307 0.441/0.307 0.498/0.360 0.452/0.364 0.521/0.393 0.521/0.418 0.545/0.425 0.650/0.525 0.664/0.530

ARC 0.281/0.216 0.325/0.244 0.317/0.239 0.405/0.310 0.406/0.343 0.490/0.382 0.463/0.387 0.475/0.391 0.593/0.495 0.611/0.501
ALL 0.365/0.251 0.450/0.314 0.441/0.309 0.500/0.362 0.449/0.361 0.524/0.394 0.515/0.412 0.538/0.420 0.651/0.525 0.665/0.531

Table 1. Attribute performance on the LasHeR [7] test set.

ATOM(EF) MDNet(MF) VITAL(MF) LTMU(EF) TransT STARKS50 OSTrack ProTrack ViPT SDSTrack
[3] [8] [10] [2] [1] [13] [16] [15] [17] (ours)

Camera Motion 0.557/0.385 0.589/0.406 0.602/0.415 0.640/0.452 0.644/0.474 0.649/0.479 0.658/0.511 0.665/0.505 0.711/0.559 0.737/0.576
Rotation 0.452/0.351 0.421/0.330 0.434/0.334 0.574/0.442 0.525/0.428 0.546/0.453 0.595/0.487 0.574/0.476 0.678/0.551 0.648/0.527

Deformation 0.298/0.222 0.156/0.127 0.155/0.129 0.351/0.253 0.325/0.224 0.346/0.264 0.362/0.264 0.378/0.269 0.468/0.359 0.462/0.354
Full Occlusion 0.401/0.258 0.478/0.277 0.482/0.279 0.486/0.320 0.529/0.376 0.480/0.331 0.543/0.399 0.547/0.380 0.566/0.427 0.594/0.443

Low Illumination 0.518/0.358 0.601/0.389 0.581/0.375 0.599/0.421 0.618/0.450 0.587/0.431 0.623/0.478 0.627/0.472 0.721/0.565 0.743/0.571
Out-of-View 0.423/0.282 0.406/0.260 0.427/0.281 0.525/0.360 0.501/0.381 0.511/0.383 0.521/0.407 0.568/0.425 0.543/0.425 0.566/0.433

Partial Occlusion 0.438/0.285 0.548/0.335 0.536/0.324 0.530/0.362 0.543/0.386 0.498/0.352 0.589/0.439 0.532/0.380 0.672/0.512 0.664/0.500
Viewpoint Change 0.556/0.386 0.583/0.385 0.557/0.357 0.634/0.457 0.611/0.462 0.636/0.483 0.654/0.534 0.676/0.508 0.758/0.605 0.784/0.627

Scale Variation 0.559/0.369 0.596/0.345 0.581/0.327 0.611/0.429 0.597/0.437 0.526/0.385 0.611/0.507 0.570/0.424 0.729/0.572 0.735/0.574
Background Clutter 0.551/0.369 0.642/0.407 0.626/0.397 0.599/0.417 0.626/0.455 0.585/0.421 0.673/0.572 0.596/0.440 0.733/0.573 0.740/0.573

Motion Blur 0.504/0.360 0.456/0.321 0.462/0.332 0.558/0.410 0.554/0.424 0.560/0.428 0.592/0.466 0.491/0.376 0.637/0.504 0.638/0.510
Aspect Ration Change 0.502/0.346 0.517/0.321 0.512/0.320 0.581/0.416 0.592/0.434 0.547/0.399 0.640/0.495 0.575/0.430 0.692/0.548 0.725/0.568

Fast Motion 0.569/0.398 0.570/0.368 0.544/0.357 0.607/0.439 0.577/0.423 0.566/0.424 0.656/0.506 0.567/0.432 0.749/0.585 0.753/0.589
No Motion 0.589/0.429 0.598/0.426 0.635/0.427 0.707/0.506 0.625/0.490 0.618/0.466 0.688/0.556 0.671/0.507 0.707/0.583 0.725/0.589

Illumination Variation 0.580/0.404 0.672/0.453 0.651/0.432 0.638/0.453 0.607/0.454 0.592/0.448 0.642/0.500 0.611/0.465 0.744/0.588 0.767/0.595
Over Exposure 0.600/0.408 0.688/0.445 0.661/0.434 0.619/0.424 0.548/0.392 0.562/0.410 0.604/0.450 0.593/0.433 0.734/0.546 0.752/0.560

Background Object Motion 0.550/0.367 0.634/0.401 0.618/0.388 0.611/0.423 0.612/0.439 0.574/0.412 0.659/0.497 0.588/0.433 0.727/0.561 0.729/0.561
ALL 0.608/0.412 0.661/0.426 0.649/415 0.655/0.459 0.650/0.474 0.612/0.446 0.695/0.534 0.632/0.471 0.758/0.592 0.767/0.597

Table 2. Attribute performance on the VisEvent [11] test set.

occlusion, such as Partial Occlusion (PO), Total Occlusion
(TO), and Hyaline Occlusion (HO), our method achieves
the best results, indicating its effectiveness in accurately
tracking targets even when they are partially or entirely
occluded. Notably, it shows a precision improvement of
11.6% and a success improvement of 8.9% in Hyaline Oc-
clusion (HO). Regarding sequences related to illumination,
such as Low Illumination (LI), High Illumination (HI), and
Abrupt Illumination Variation (AIV), our method demon-
strates the best performance. Particularly, it achieves a pre-
cision improvement of 16.8% and a success improvement of
13.2% in Abrupt Illumination Variation (AIV), showing a
strong ability to adapt to variations in external lighting con-
ditions. In sequences involving similarity interference, such
as Similar Appearance (SA) and Thermal Crossover (TC),
our method achieves superior results, indicating its effec-

tiveness in distinguishing similar objects. Furthermore, our
method excels in handling motion interference, including
Motion Blur (MB), Camera Moving (CM), and Fast Mo-
tion (FM), outperforming other methods. For example, it
obtains a precision improvement of 2.6% and a success im-
provement of 1.6% in Motion Blur (MB), suggesting its ca-
pability to cope with camera or target movement interfer-
ence. Additionally, our SDSTrack exhibits superior perfor-
mance in attributes such as Low Resolution (LR), Defor-
mation (DEF), Frame Lost (FL), Scale Variation (SV), etc.,
demonstrating its robustness.

VisEvent. We also evaluate the attribute-based perfor-
mance of our SDSTrack on the VisEvent [11] test set. The
results are shown in Tab. 2. Our method achieves state-of-
the-art performance in the majority of attributes. Notably,
our method outperforms other methods in sequences involv-



ing motion interference, such as Camera Motion, Motion
Blur, Fast Motion, and Background Object Motion. Specif-
ically, it shows a precision rate of 73.7% and a success rate
of 57.6% in Camera Motion, a precision rate of 75.3%, and
a success rate of 58.9% in Fast Motion, indicating the effec-
tive utilization of multimodal information, thereby enhanc-
ing tracking robustness. Regarding sequences related to il-
lumination, such as Low Illumination, Illumination Varia-
tion, and Over Exposure, our method achieves the best re-
sults. For example, our SDSTrack obtains a precision rate
of 74.3% and a success rate of 57.1% in Low Illumination,
and a precision rate of 76.7% and a success rate of 59.5%
in Illumination Variation. Furthermore, our SDSTrack ex-
hibits superior performance in Full Occlusion, Out-of-View,
Viewpoint Change, Scale Variation, Background Clutter,
Aspect Ratio Change, and other attributes, demonstrating
improved robustness.

Overall, the results obtained on both the LasHeR [7] and
VisEvent [11] test sets indicate the strong performance and
robustness of our SDSTrack.

2.2. Supplementary Ablation Studies

Effect of different mask strategies. We conduct a se-
ries of exploration experiments to investigate the strategies
of applying masking to multimodal embeddings in the Ran-
dom Complementary Patch Mask (RCPM) approach. The
results of these experiments are presented in Tab. 3. Take
the strategy “10%, 10%” as an example, we randomly oc-
clude 10% of the RGB patch embeddings (ẑrgb, x̂rgb) and
10% of the X-modal embeddings (ẑX, x̂X). However, if
both the RGB and X modalities occlude many positions,
we remove the X-modal occlusion in the positions to en-
sure that at least one modality is valid. On the contrary,
the strategy “30%, 30%†” (or “50%, 50%†”) means that
if both RGB and X occlude many positions, we still pre-
serve the X-modal occlusion. The experimental results sug-
gest that lower occlusion rates, such as 10% and 20%, can
only marginally improve robustness, particularly in scenar-
ios involving RGB dropping, resulting in poor overall per-
formance. On the other hand, higher occlusion rates, such
as 40% and 50%, effectively enhance the model’s robust-

strategies
w/o RGB Total Occlusion Motion Blur Abrupt IV overall
Pre Suc Pre Suc Pre Suc Pre Suc Pre Suc

10%, 10% 0.502 0.406 0.459 0.586 0.456 0.580 0.436 0.488 0.649 0.516
20%, 20% 0.481 0.394 0.466 0.593 0.469 0.596 0.428 0.486 0.658 0.525
30%, 30%† 0.500 0.405 0.460 0.584 0.466 0.589 0.443 0.492 0.655 0.523
40%, 40% 0.533 0.428 0.467 0.591 0.467 0.593 0.470 0.525 0.654 0.521
50%, 50% 0.534 0.432 0.463 0.586 0.464 0.585 0.456 0.499 0.655 0.523
50%, 50%† 0.534 0.428 0.454 0.578 0.449 0.571 0.464 0.519 0.646 0.514
30%, 30% 0.538 0.432 0.478 0.604 0.475 0.599 0.482 0.543 0.665 0.531

Table 3. Ablation studies on the different random complemen-
tary patch mask strategies on the LasHeR [7] test set. † denotes
that we will not remove the X-modal occlusion if RGB and X oc-
clude the same positions.

fusion strategies Pr Re F-score
1 gap 0.575 0.571 0.573

2 even gaps 0.605 0.590 0.598
3 even gaps 0.610 0.596 0.603
4 even gaps 0.616 0.597 0.606
6 even gaps 0.600 0.598 0.599

12 even gaps 0.573 0.575 0.574
4 uneven gaps 0.619 0.609 0.614

Table 4. Ablation studies on the effect of strategies for reusing
ViT blocks as fusion stages on the DepthTrack [14] test set.

ness, especially when RGB data is missing. These strategies
reduce dependence on the RGB modality but obtain moder-
ate overall performance due to a reduction in the amount
of effective semantic information. Comparing the strategies
“30%, 30%” and “30%, 30%†” as well as “50%, 50%” and
“50%, 50%†”, where † denotes that we will not remove the
X-modal occlusion if RGB and X occlude the same posi-
tions, we find that it is necessary to retain the effectiveness
of at least one modality. Therefore, we choose an occlusion
rate of 30% and ensure information availability from at least
one modality. This strategy not only yields the best perfor-
mance in various challenging scenarios, such as RGB drop-
ping, complete occlusion of the target, motion interference,
and abrupt changes in illumination, but also demonstrates
the best overall performance.

Effect of different fusion strategies. To investigate
the effect of different strategies for reusing ViT blocks as
multimodal fusion stages, we designed several comparative
strategies. The ViT structure is not explicitly staged, so we
try to perform multimodal fusion by reusing ViT blocks in
different gaps. For example, we reuse only the 11th ViT
block as the fusion stage (1 gap) or reuse the 5th and 11th
blocks as multiple fusion stages (2 even gaps). We also ex-
plore other strategies following a similar pattern. As shown
in Tab. 4, the results indicate that solely reusing the 11th
block as the fusion stage (1 gap) fails to achieve satisfactory
fusion, resulting in an F-score of only 57.3%. By reusing
the 5th and 11th blocks (2 even gaps), we enable multi-
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Figure 1. Comparison of training speed and overall model per-
formance among various trackers on the DepthTrack [14] test
set. The left figure illustrates the F-scores of trackers at different
epochs, while the right figure demonstrates the F-scores of trackers
at different training durations.
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Figure 2. Visualization of tracking results. Case 1 and Case 2 represent RGB-D tracking, Case 3 and Case 4 denote RGB-T tracking,
and Case 5 and Case 6 signify RGB-E tracking. The small images in the corners of each figure show the X-modal images.

modal fusion across multiple semantic levels, leading to im-
proved fusion performance. Refining the gaps by reusing
the 3rd, 7th, and 11th blocks (3 even gaps) or the 2nd, 6th,
9th, and 11th blocks (4 even gaps), we achieve even better
outcomes with F-scores exceeding 60%. However, continu-
ously refining gaps, like “6 even gaps” and “12 even gaps”,
increases the computational burden without significant per-
formance improvement. In this paper, inspired by [9], we
choose the strategy “4 uneven gaps”, i.e., reusing the 3rd,
6th, 9th, and 11th blocks as fusion stages, effectively uti-
lizing mid-level features compared to the strategy “4 even
gaps” and obtaining the best performance.

Training speed and tracking performance. In order to
evaluate the training speed and performance of our method
compared to existing methods, we conduct a comparative

analysis. We ensure that the sampling number per epoch
and data preprocessing is consistent across all methods,
thereby attributing any differences in training speed and
model performance solely to variations in model design.
As shown in Fig. 1, the left figure demonstrates the perfor-
mance of different methods in terms of F-score at each train-
ing epoch, and the right figure compares the methods under
the same training time. The left figure demonstrates that our
method, SDSTrack, outperforms the previous state-of-the-
art (SOTA) method, ViPT [17], in terms of F-score in each
training epoch, consistently reaching the new SOTA level.
Furthermore, the right figure shows that despite the poten-
tially slower training speed caused by our self-distillation
strategy (as mentioned in the limitations section), our SD-
STrack requires only minimal training time to surpass the



performance of previous SOTA methods. This advantage
persists throughout the subsequent training process. In sum-
mary, our method efficiently fine-tunes pre-trained models
on small-scale multimodal datasets with fewer epochs and
less training time.

2.3. Visualization
We present the tracking results of different modalities in
Fig. 2. In scenes where target occlusion occurs, as observed
in Case 2, the previous SOTA method, ViPT [17], is sus-
ceptible to interference from objects in front of the target,
leading to tracking failures. In contrast, our SDSTrack ef-
fectively mitigates the impact of target occlusion, resulting
in more robust tracking. In scenes with a high presence of
similar objects, as shown in Case 1, Case 4, and Case 5,
our method demonstrates its ability to resist the influence
of these objects, ensuring accurate tracking. Furthermore,
in scenarios with poor image quality, as observed in Case
3 and Case 6, our method successfully overcomes the in-
fluence of the target itself or external light changes by fus-
ing multimodal images. This enables us to accurately track
the target even under challenging conditions. Our approach
fully leverages the information provided by multimodal im-
ages, reducing reliance on a specific modality, particularly
RGB images, and thereby enabling more accurate and ro-
bust tracking.
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