
Pose Adapted Shape Learning for Large-Pose Face Reenactment

Supplementary Material

This report includes the following sections ([L #] refers
to the line number in the paper where we ask the reader to
refer to the Supplementary document.):
1 Additional details of the network settings for the major

modules.
2 Additional details of the six PAEs (Pose Adapted face En-

coders) [L 381] .
3 Additional details and specifications of the MPIE-LP and

VoxCeleb2-LP datasets [L 431].
4 Details of the evaluation metrics [L 440].
5 Additional ablation study on different loss settings.
6 Comparison on VoxCeleb2 for regular pose variation.
7 Computational Cost.
8 More comparisons with other approaches on the MPIE-

LP and VoxCeleb2-LP datasets.
9 Link to the code and model. The code and pretrained

model are available on https://github.com/
AvLab-CV/PASL.

1. Network Settings of Major Modules

Table 1 presents the dimensions of the DECA parameters,
including the identity shape parameter β, expression shape
parameter ψ, and pose parameter θ, as well as dimensions of
the recomposed shap src, the source shape ss and the output
shape so in the Cycle-consistent Shape Generator (CSG) [L
223, 238, 472].

Notations β ψ θ src ss so
Dim 100 50 6 2562 × 3 2562 × 3 2562 × 3

Table 1. Dimensions of identity shape parameter β, expres-
sion shape parameter ψ, pose parameter θ, recomposed shap src,
source shape ss, and output shape so in the CSG (Cycle-consistent
Shape Generator).

Table 2 shows the network settings of the encoder Ve and
the decoder Vd, and Table 3 are the network settings of the
style encoder Es and the discriminator Df . These mod-
ules are all in the Attention Embedded Generator (AEG) [L
262∼264].

Table 4 shows the dimensions of the latent code crc, the
attention feature code F t

at, the style code cs, the feature se-
quence fm−1, the self-attention feature sequence fM , the
mapping weights of query Wq , the mapping weights of
key Wk, the mapping weights of value Wv , and the triplet
(query Qm, key Km, value Vm) in the transformer T . The
number of multi-headed attention decoding layers N and
the number of heads Nh are also given in Table 4.

Layer Resample Norm Output Dim
Ve

Input - - 2562 × 3

Conv1× 1 - - 2562 × 64
ResBlk 1 AvgPool IN 1283

ResBlk 2 AvgPool IN 642 × 256
ResBlk 3 AvgPool IN 322 × 512
ResBlk 4 AvgPool IN 162 × 512
ResBlk 5 AvgPool IN 82 × 512

Vd

ResBlk 1 Upsample AdaIN 162 × 512
ResBlk 2 Upsample AdaIN 322 × 512
ResBlk 3 Upsample AdaIN 642 × 256
ResBlk 4 Upsample AdaIN 1283

ResBlk 5 Upsample AdaIN 2562 × 64
Conv1× 1 - - 2562 × 3

Table 2. The network settings of the encoder Ve and the decoder
Vd in the AEG (Attention Embedded Generator).

Layer Resample Output Dim
Input - 2562 × 3

Conv1× 1 - 2562 × 64
ResBlk 1 AvgPool 1283

ResBlk 2 AvgPool 642 × 256
ResBlk 3 AvgPool 322 × 512
ResBlk 4 AvgPool 162 × 512
ResBlk 5 AvgPool 82 × 512
ResBlk 6 AvgPool 42 × 512

Leaky Relu - 162 × 512
Conv4× 4 - 12 × 512
Leaky Relu - 12 × 512

Reshape - 512
FC - 128/1

Table 3. The network settings of the style encoder Es and the
discriminator Df .

Notations crc F t
at cs fm−1 fM N Nh

Dim 82 × 512 82 × 512 128 512 64× 512 64× 512 8
Notations Wq Wk Wv Qm Km Vm Q

Dim 512× 512 512× 512 512× 512 512 512 512 512

Table 4. Dimensions of latent code crc, attention feature code F t
at,

style code cs, feature sequence fm−1, self-attention feature se-
quence fM , the triplet (Qm, Km, Vm), mapping weights of query
Wq , the mapping weights of key Wk, the mapping weights of
value Wv , and the number of the multi-headed attention decoding
layers N and the number of heads Nh in transformer T .

2. Additional Details of Pose-Adapted face En-
coders (PAEs)

[L 381] The procedure of dividing the MS1Mv3 [4] into
training and validating subsets is described as follows. We
divided the subjects into 85% for training and 15% for val-
idation for each pose subset. As the number of images with
large poses varies from one subject to another, we took this

https://github.com/AvLab-CV/PASL
https://github.com/AvLab-CV/PASL


Figure 1. Precision and recall of PAEs, Magface (Mag) [7], Arcface (Arc) [3], Adaface (Ada) [6], and VGGFace2 (Vgg) [2] tested on
IJB-C database.

Training
PAEs Eff Ess Epp Efs Esp Efp

No. images 72,615 172,444 59,264 98,278 98,296 132,256
No. subjects 12,469 12,134 13,453 11,164 11,179 12,578

Testing
No. images 12,814 12,765 10,438 17,343 17,324 23,280
No. subjects 2,208 2,148 2,378 1,972 1,965 2,213

Table 5. Numbers of images and subjects for six PAEs, upper part
is for the training set and lower part is for the testing set.

fact into account when organizing the training and testing
splits. Table 5 shows the numbers of subjects and images in
the training and testing sets for the six PAEs. Figure 1 shows
the precision and recall of the PAEs compared to off-the-
shelf pre-trained face encoders when testing on the IJB-C
dataset [8], with a magnified view to each subfigure in Fig-
ure 2. Figure 3 illustrates the comparisons with the same
encoders but fine-tuned on our training set, with zoom-in
views in Figure 4.

3. Dataset Specification

[L 431] Table 6 gives the numbers of pose pairs for the
four large-pose subsets (ss, pp, sp, fp) in the training and
testing sets of the MPIE-LP and VoxCeleb2-LP. The pose
pairs in each large-pose subset are evenly spread out within
specific face/head orientation boundaries, so the large-pose
reenactment performance can be better evaluated. Figure 5

Ess Epp Esp Efp Total

Training (pairs)

MPIE-LP 414,720 898,560 1,520,640 1,935,360 4,769,280

Testing (pairs)

205,800 411,600 843,680 1,058,410 2,519,490

Training (pairs)

VoxCeleb2-LP 1,269,610 1,233,590 684,320 1,314,260 4,501,780

Testing (pairs)

182,620 180,730 136,940 196,850 697,140

Table 6. Numbers of training and testing pairs of MPIE-LP with
80/47 subjects in training/test sets, and of VoxCeleb2-LP with
1259/196 subjects.

shows the Pie chart of the percentages of four large-pose
subsets in the training set (left) and testing set (right) of
VoxCeleb2-LP. As the VoxCeleb2 is an in-the-wild collec-
tion, it is impossible to make the face orientation distributed
as evenly as the MPIE. However, for each subset, the data is
made as evenly distributed as possible for the specification
for that subset. In terms of naming, different videos of the
same persons are arranged in sequence according to the se-
rial numbers, and consecutive images are arranged in order.



Figure 2. Zoomed-in views of Figure 1

Figure 3. Precision and recall of PAEs, Magface (Mag) [7], Arcface (Arc) [3], Adaface (Ada) [6], and VGGFace2 (Vgg) [2] tested on
IJB-C database. All selected encoders are fine-tuned on the training sets of PAEs.

4. Evaluation Metrics

[L 440] Evaluation metrics were selected to test the source
identity preservation, reference action transformation and
photo-realistic quality of the generated target faces, includ-

ing the Frechet-Inception Distance (FID), Cosine Similarity
(CSIM), Average Rotation Distance (ARD), Learned Per-
ceptual Image Patch Similarity (LPIPS) . FID evaluates the
photo-realistic quality by measuring the distribution dis-



Figure 4. Zoomed-in views of Figure 3

Figure 5. Percentages of four large-pose subsets in the training set
(left) and testing set (right) of VoxCeleb2-LP.

tance between the features extracted from the real and gen-
erated images. CSIM measures the identity preservation in
the generated images by computing the cosine similarity be-
tween the facial features extracted from the source and gen-
erated images. ARD evaluates the pose transformation and
can be computed by using the rotation matrix obtained from
the 3DMM of the reference and the generated faces. LPIPS
computes the similarity between the activations of two im-
age patches, and is shown to match human perception well.
It can only be computed for self-reenactment or when the
ground-truth target face is available, such as MPIE-LP.

5. Additional Ablation Study

Table 7 shows the FID, CSIM, ARD and LPIPS for the
cross-reenactment on the MPIE-LP testing set with different

Metrics FID↓ CSIM↑ ARD↓ LPIPS↓

w/o Lid 42.79 0.153 2.653 0.292
w/o Lsty 29.54 0.348 2.461 0.254
w/o Lper 27.63 0.367 2.493 0.249
w/o Lcc 26.25 0.381 2.537 0.242
PASL 18.1 0.46 2.24 0.21

Table 7. Cross-reenactment performance on MPIE-LP for differ-
ent settings on losses.

settings. The third row from the bottom shows the perfor-
mance of the PASL with the complete set of losses. The top
row shows the same model but without the PAE-based iden-
tity loss Lid, and the performance is the worst, demonstrat-
ing the effectiveness of the loss function. The other rows
show the performance without other component losses. It
shows that the perceptual loss Lper is more important than
the style loss Lsty , and Lcc is the second most important
loss, behind Lid. Figure 6 shows a qualitative comparison
of the reenacted faces for the settings in Table 7.

6. Comparison on VoxCeleb2 for Regular Pose
Variation

The table in Figure 8 shows the performance of PASL
compared to state-of-the-art approaches on the VoxCeleb2
dataset in regular pose. PASL outperforms the selected
SOTA approaches in all metrics on this benchmark dataset.



Figure 6. Samples of target face for the different settings in Table 7.

Metrics FID↓ CSIM↑ ARD↓ LPIPS↓
Bi-layer[9] 88.72 0.38/0.2/0.42 3.01 0.51

DG[5] 36.7 0.43/0.45/0.58 2.89 0.22
HyperReenact[1] 59.8 0.55/0.53/0.61 2.93 0.21

PASL 32.4 0.57/0.52/0.65 2.65 0.2

Table 8. Self-reenactment performance on regular pose VoxCeleb2

7. Computational Cost

In this section, we will be discussing the computing cost
and the experiments that were conducted using an NVIDIA
3090 GPU. We have included a table (Table 9) which dis-
plays the parameters and FLOPS for different settings of
PASL. The PAE utilizes six face encoders to extract facial
features for calculating Lid. This only increases the number
of parameters and does not affect computational complex-
ity. To compare our approach with state-of-the-art (SotA)
approaches, we have included a table (Table 10) that shows
the FLOPS and inference time (images/sec). Some of the
SotA approaches only provide demo code, so we compared
them during inference. HyperReenact[1] is the most com-
putationally expensive approach, while Bi-layer[9] has the
lowest computational complexity.

Parameters (M) FLOPS (G)
Baseline 194.7 121.2

Baseline+CSG 220.5 133.5
Baseline+PAE 268.2 121.2

PASL 294.1 133.5

Table 9. The computing cost with various settings of PASL

Metrics FLOPS (G) Inference time (imgs/s)
Bi-layer[9] 77.1 5.02

DG[5] 85.5 4.32
HyperReenact[1] 103.7 3.48

PASL 97.3 3.71

Table 10. The computing cost with different settings of PASL

8. More Comparisons with Other Approaches
Figure 7, 8, 9 and 10 present more comparisons of the self-
and cross-reenactment results with other approaches on the
MPIE-LP and VoxCeleb2-LP. Note the large pose differ-
ences between the sources and reference, which are not seen
in previous work.

9. Code and Model
The code and pretrained model are available on https:
//github.com/AvLab-CV/PASL.

https://github.com/AvLab-CV/PASL
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Figure 7. Comparison with other approaches for self-reenactment on MPIE-LP.



Figure 8. Comparison with other approaches for cross-reenactment on MPIE-LP.



Figure 9. Comparison with other approaches for self-reenactment on VoxCeleb2-LP.



Figure 10. Comparison with other approaches for cross-reenactment on VoxCeleb2-LP.
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