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Supplementary Material

Here, we start with module design details and give out
more implementation details, then introduce the dataset de-
tails, including generation and qualitative samples, and the
exact values for the benchmarks.

1. Detailed Information About Module Designs
1.1. Information-filling-driven message selection
Solution. Alg. 1 presents the solution of our information-
filling-driven message selection, this is,

{M∗
i→j}i,j = argmax

M

N∑
j=1

fmin

Cj +

N∑
i=1,i ̸=j

Mi→j ⊙Ci, u

 ,

(1a)

where
N∑

i,j=1,j ̸=i

Mi→j ≤ b,Mi→j ∈ {0, 1}H×W . (1b)

Here, Mi→j ∈ {0, 1}H×W is the binary selection matrix
supported on the BEV map. Each element in the matrix
indicates whether Agent i should send the information to
Agent j at a specific spatial location (1 for sending infor-
mation, and 0 for not sending). ⊙ denotes element-wise
multiplication, and the scalar u is a hyper-parameter to re-
flect the upper bound of information demand. The function
fmin(·, ·) computes the element-wise minimum between a
matrix and a scalar.

Despite the hard constraints and non-differentiability
of binary variables in this proxy-constrained optimization
problem, it possesses an analytical solution. We tackle this
by splitting the optimization into two sub-problems: i) opti-
mizing the maximization in Equation (1a) without the con-
straint in Equation (1b) and removing the indifferentiable
thresholding function fmin(·); ii) addressing the equivalent
maximization problem of Equation (1a) while considering
the constraint in Equation (1b).
• The first sub-problem involves unconstrained maxi-

mization optimization, which is given by

{Mi→j}i,j = argmax
M

N∑
j=1

fmin

Cj +
N∑

i=1,i ̸=j

Mi→j ⊙Ci, u

 ,

(2a)

where Mi→j ∈ {0, 1}H×W . (2b)

This involves selecting the highest-scoring regions to meet
the information demand, excluding unnecessary informa-
tion for each sender-receiver pair, resulting in Mi→j . Steps
include: a) Sorting scores from all collaborators in descend-
ing order for each spatial location; b) Accumulating these
scores until reaching the information demand threshold and
disregarding the rest, refining the subset.

By doing so, we can remove the indiscernible cutoff by
using the optimized matrix Mi→j to focus on required in-
formation scores, this is,

fmin

Cj +

N∑
i=1,i ̸=j

Mi→j ⊙Ci, u

 = Cj +Mi→j ⊙Ci, (3a)

= Cj +Ci→j . (3b)

• The second sub-problem is a proxy-constrained maxi-
mization optimization without an indiscernible cutoff. By
substituting Equation (3b) into Equation (1a), we get an
equivalent formulation of the original optimization in Equa-
tion (1a),

{M∗
i→j}i,j = argmax

M

N∑
j=1

N∑
i=1,i̸=j

Mi→j ⊙Ci→j , (4a)

where

N∑
i,j=1,j ̸=i

Mi→j ≤ b,Mi→j ∈ {0, 1}H×W . (4b)

This optimization has an analytical solution, which involves
selecting top-b ranked spatial regions based on elements in
M. The steps are: c) Resorting all retained scores across
spatial regions in descending order; d) Forming M∗ by
marking top-b elements in this list as 1, others as 0.

Note that, information demand is fulfilled in b), com-
munication constraint is met in d), and maximization is
achieved through prioritization in a) and c). Collectively,
these steps yield an optimal solution for the constrained op-
timization problem in Equation (1a) and Equation (1b).
Computation cost. Step c is the most computationally de-
manding, involving the sorting of all necessary spatial re-
gions to meet the information demand. However, in our
scenario, the precise order is irrelevant; we only need to
identify the top-b elements from m spatial region candi-
dates, resulting in a computational cost of O(log(m)). By
concentrating on the highly sparse foreground areas, we sig-
nificantly lower this cost to a negligible level, thus allowing
each agent to offer more focused support to others at mini-
mal expense.

1.2. Codebook-based message representation

Extensibility for new heterogeneous agents. The code-
book representation creates a common feature space that
enables the integration of new heterogeneous agents. In the
training phase, perceptual features from all agents, whether
equipped with camera or LiDAR sensors, are collected in
𭟋 for codebook training. This process benefits from joint



Algorithm 1 Information-filling-driven Message Selection

Require: Spatial information score maps {Ci}Ni=1 of N agents with dimensions (H,W ), information demand u, communi-
cation budget b.

Ensure: Selection matrices {Mi→j}Nj=1,j ̸=i for each agent pair (i, j).
1: # Select the required information to fulfill the receiver’s information demand from high-scoring senders per-location
2: # Initialization
3: for all i ∈ {1, . . . , N}, j ∈ {1, . . . , N} do
4: Mi→j = 0 ∈ {0, 1}H×W

5: end for
6: for all j ∈ {1, . . . , N} do ▷ Receiver
7: for h ∈ {0, . . . ,H − 1}, w ∈ {0, . . . ,W − 1} do ▷ Per-location
8: # Step a: Prioritize senders with higher scores
9: R = frank({Ci[h,w]}Ni=1,i̸=j) ▷ Senders

10: s = Cj [h,w] ▷ The receiver’s initial information amount
11: # Step b: Exclude information over information demand
12: A = [] ▷ The selected senders per-location
13: for each Ci[h,w] in R do
14: if s ≤ u then ▷ Check the whether the information demand is reached
15: # Select sender
16: s = s+Ci[h,w]
17: Append i to A
18: else
19: # Stop selection once demand is met
20: break
21: end if
22: end for
23: # Select the required regions whose accumulated information below information demand
24: for all i ∈ A do
25: Mi→j [h,w] = 1
26: end for
27: end for
28: # Exclude information over demand
29: for all i ∈ {1, . . . , N} \ {j} do
30: Ci→j = Ci ⊙Mi→j

31: end for
32: end for
33: # Select the most beneficial information within the communication budget among all the needed spatial regions
34: # Initialization
35: for all i ∈ {1, . . . , N}, j ∈ {1, . . . , N} do
36: Mi→j = 0 ∈ {0, 1}H×W

37: end for
38: # Step c: Prioritize information with higher scores
39: R← frank({Ci→j}Ni,j=1,i̸=j) ▷ All the required spatial regions between all the sender-receiver pairs
40: # Step d: Exclude information over communication budget
41: for all j ∈ {1, . . . , N} do ▷ Receiver
42: for all i ∈ {1, . . . , N} \ {j} do ▷ Sender
43: for h ∈ {0, . . . ,H − 1}, w ∈ {0, . . . ,W − 1} do ▷ Per-location
44: if Ci→j [h,w] is in top-b of R then
45: Mi→j [h,w] = 1
46: end if
47: end for
48: end for
49: end for
50: return {Mj→i}Ni,j=1,i̸=j



supervision using diverse inputs, enhancing learning effi-
ciency and ensuring that critical perceptual information is
retained. As a result, the optimized task-adaptive codebook
D∗ encapsulates the essential features from various modal-
ities. During inference, all agents utilize this optimal code-
book D∗ directly.
Adaptability for codebook configuration. The code-
book’s configuration is highly adaptable, allowing for ad-
justments in both the size of the codebook nL and the num-
ber of codes nR utilized for representing the input vector.
During training, we vary the code quantity from 1 to nR,
enabling the optimized codebook to accommodate differ-
ent configurations and communication budgets during in-
ference.

During training, especially with an increased number of
codes, the representation comprises combinations of mul-
tiple codes. Consequently, task-driven codebook learning
entails the aggregation of these codes for feature approxi-
mation at each spatial location. This process is defined as
follows,

D∗ = argmin
D

∑
F∈𭟋

∑
h,w

min
{ℓr}

nR
r=1

(
Ψ(Fd) +

∥∥F[h,w] − Fd

∥∥2

2

)
,

(5a)

where Fd =
∑

ℓr∈LnR

D[ℓr ],LnR = {ℓr}nR
r=1. (5b)

Here, Fd is a combination of codes {D[ℓr]}
nR
r=1, and Ψ(·)

measures the detection performance achieved by replacing
F[h,w] with Fd. The code index set LnR

= {ℓr}nR
r=1 is

selected to minimize the reconstruction error in a greedy
way. As nr ranges from 1 to nR, the optimization of the
code index is carried out as follows

l∗r = min
Lnr−1

∪{lr}

∥∥∥∥∥∥F[h,w] −
∑

ℓk∈Lnr−1
∪{lr}

D[ℓk]

∥∥∥∥∥∥
2

2

. (6)

In this process, the code index l∗r is determined by minimiz-
ing the reconstruction error, which is the L2 norm of the
difference between the feature vector F[h,w] and the sum of
the selected codes from the codebook D. The selection at
each step involves the union of the set Lnr−1

, representing
the previously selected indices, and the new index l∗r .

During inference, each agent leverages the optimized
codebook D to convert the selected sparse feature map
Zi→j into code indices Ii→j . At each Bird’s Eye View
(BEV) location (h,w), given a code quantity of nr, the code
index is obtained as follows,

(Ii→j)[h,w] = argmin
Lnr

∥∥∥∥∥∥(Zi→j)[h,w] −
∑

ℓk∈Lnr

D[ℓk]

∥∥∥∥∥∥
2

2

. (7)

This method aligns with Equation (6) to create the opti-
mized set of code indices Lnr

= {ℓk}nr

k=1. The value of
nr, ranging from 1 to nR, allows the codebook to be flexi-
ble for different configurations and communication require-
ments during deployment.

2. Additional Experimental Results
2.1. Robustness assessment under more metrics

We validate the robustness against pose error and commu-
nication latency on both OPV2VH+ and DAIR-V2X un-
der camera-only and heterogeneous settings. The pose er-
ror setting follows CoAlign [8] using Gaussian noise with
a mean of 0m and standard deviations ranging from 0m
to 1.0m. The latency setting follows SyncNet [5], vary-
ing from 0ms to 500ms. Figs. 1 and 2 show the detection
performances as a function of pose error and latency, re-
spectively in terms of AP30 and AP70. We see: i) while
perception performance generally declines with increasing
levels of pose error and latency, CodeFilling consis-
tently outperforms baselines under all imperfect conditions;
ii) CodeFilling consistently surpasses No Collabora-
tion, whereas baselines fail when pose error exceeds 0.4m
and latency surpasses 100ms. In CodeFilling, setting a
lower information demand u in situations with pose errors
and latency issues allows each agent to collect less mislead-
ing collaborative information, thereby at least maintaining
their individual performance.

2.2. Discussion on the realistic limitations

There are many challenges in a collaborative perception
system. In this work, we focus on the bottleneck chal-
lenge in current collaborative perception systems; that is,
the trade-off between communication bandwidth and per-
ception performance. This challenge has been actively ad-
dressed in previous works [2, 3, 6, 7]. Collaborative percep-
tion is enabled and also severely limited by the communica-
tion capacity, which is critically reflected in the highly dy-
namic and limited bandwidth in real-world communication
systems. CodeFilling flexibly adapts to various com-
munication bandwidths, achieving superior performance-
bandwidth trade-off.

Here we further discuss other realistic limitations, assess
the robustness of our system, and future improvements to
be made.
• For other realistic communication issues such as

latency, time synchronization, pose error, attack,
CodeFilling communicates strategically when neces-
sary, rather than all the time or everywhere, to reduce the
possibility of encountering communication problems. And
CodeFilling can set a lower information demand u in
situations with these issues, which allows each agent to col-
lect less misleading collaborative information, thereby at
least maintaining their individual performance.
• For the data availability, CodeFilling works on

both RGB and point cloud modalities and is sensor-friendly,
so it can be deployed on cheap camera sensors and lidar sen-
sors. And it accommodates heterogeneous settings where
agents with different equipment can also collaborate with



Figure 1. CodeFilling is robust to pose error issue. Figure 2. CodeFilling is robust to communication latency issue.

each other.

2.3. Experimental settings

In our system, for LiDAR sensor inputs, we adopt the Point-
Pillar detector [4], while for camera inputs, we follow the
CaDDN [9], utilizing 50 depth categories with linearly in-
creasing spacing. To enhance learning effectiveness, we
train all models in a heterogeneous setting. Consequently,
in the inference phase, this model becomes versatile and
applicable in homogeneous and heterogeneous settings, in-
cluding camera-only, LiDAR-only, and heterogeneous se-
tups.

For the training strategy, we initially pre-train the single-
agent detector without a codebook for 30 epochs, starting
with a learning rate of 2e-3 and reducing it by a factor of
0.1 at the 20th epoch. This phase establishes a robust per-
ceptual feature space. Subsequently, we train the entire col-
laborative perception model for 20 epochs, integrating both
codebook reconstruction and perception losses. This dual
supervision not only boosts learning efficiency but also en-
sures the codebook retains essential perceptual features, en-
abling a lossless performance for the perceptual task.

3. OPV2VH+ Dataset
Data generation. We extend the original OPV2V [11] with
more collaborative agents (10), and extend the OPV2V+ [3]
with more modalities. Our OPV2VH+ is co-simulated by
OpenCDA [10] and CARLA [1]. OpenCDA provides the
driving scenarios that ensure the agents drive smoothly and
safely, including the vehicle’s initial location and moving
speed. CARLA provides the maps, and weather and con-
trols the movements of the agents. We replay the simula-
tion logs of OPV2V and equip more vehicles with LiDAR,
camera and depth sensors. Figure. 3 shows the LiDAR and
four RGB/depth camera views (front, left, right, back) of
the same agent. Figure. 4 and Figure. 5 show a randomly
selected data sample with 10 collaborative agents, the col-
lected LiDAR and front view images in the same timestamp.
Data collection. We collect synchronous images from all
4 cameras, 4 depth sensors, and 1 LiDAR sensor on all
the collaborative vehicles in a sample. LiDAR extrinsic,

camera/depth sensor intrinsics, and extrinsic in global co-
ordinates are provided to support coordinate transforma-
tion across various collaborative vehicles. During data col-
lection, 3D bounding boxes of vehicles in the scene are
recorded at the same moment with sensor inputs, includ-
ing location (x, y, z), rotation (w, x, y, z in quaternion) in
the global coordinate, and their length, width, and height.
The location (x, y, z) is the center of the bounding box. In
total, 10,416 samples, 10,4160 point cloud sweeps, 416,640
RGB/depth images, and 482,037 3D bounding boxes are
collected.

Data usage. We randomly split the
samples into train/validation/test, resulting
6736/1980/1700 samples, 67,360/19,800/17,000 Li-
DAR sweeps, 269,400/79,200/68,000 images, and
333,543/75,289/73,205 3D bounding boxes. The dataset
is organized in a similar way to the OPV2V [11] and
OPV2V+ [3] dataset; so it can be used directly with the
original dataset processing tool-kits.

4. Benchmarks
We conduct extensive experiments on all two widely used
collaborative perception benchmarks covering three types
of collaboration settings: i) all the collaborative agents use
cameras, ii) all the collaborative agents use LiDARs, and iii)
the collaborative agents randomly use camera or LiDAR.
Regarding the heterogeneous setup, agents are randomly as-
signed either LiDAR or camera, resulting in a balanced 1:1
ratio of agents across the different modalities.

Tab. 2 presents the overall performance on the real-
world dataset, DAIR-V2X [12], and the extended simula-
tion dataset OPV2VH+. We see that CodeFilling con-
sistently achieves significant improvements over previous
methods on all the benchmarks.

Tab. 4 and Tab. 6 presents the overall performance under
realistic issues on the real-world dataset, DAIR-V2X [12],
and the extended simulation dataset OPV2VH+. We see
that CodeFilling is more robust to the pose error and
communication latency issues.



Table 1. Overall performance on DAIR-V2X. The communication cost is denoted as B.

Dataset DAIR-V2X
Setting LiDAR Camera Heterogeneous
Method/Metric B AP@30/50 B AP@30/50 B AP@30/50
No Collaboration 0.00 71.35/67.27 0.00 5.65/1.93 0.00 5.54/1.92
Late 19.43 77.40/69.54 19.43 15.82/6.59 19.43 40.82/25.14
AttFuse 22.62 72.38/64.83 22.62 2.63/0.63 22.62 12.93/3.71
DiscoNet 22.62 82.16/78.60 22.62 6.43/1.78 22.62 28.88/16.15
V2VNet 22.62 83.98/79.28 22.62 19.81/7.38 22.62 47.14/28.47
HMViT 22.62 77.09/69.92 22.62 6.65/1.40 22.62 39.78/20.83

Where2comm

0.00 71.35/67.27 0.00 5.65/1.93 0.00 5.54/ 1.92
13.85 82.39/77.07 13.70 18.47/7.36 13.88 38.73/22.30
14.94 83.73/78.48 15.59 19.59/7.86 14.95 43.39/26.29
19.42 84.50/79.24 21.59 21.90/8.32 19.40 47.47/29.73
22.62 84.50/79.39 22.62 21.96/8.34 22.62 47.47/30.00

CodeFilling

0.00 71.35/67.27 0.00 5.65/1.93 0.00 5.54/ 1.92
4.96 79.80/75.60 4.88 15.30/6.03 5.00 33.83/19.19
6.98 82.52/77.73 6.86 18.30/7.10 6.09 39.45/23.72
8.09 84.00/79.39 8.68 19.63/7.83 8.11 42.61/25.43
12.12 84.47/79.91 14.41 22.01/8.50 12.09 46.89/28.69
15.62 84.52/79.99 15.62 22.22/8.51 15.62 47.51/29.14
22.26 84.52/79.99 22.26 22.22/8.51 22.26 47.51/30.00

Table 2. Overall performance on OPV2VH+. The communication cost is denoted as B.

Dataset OPV2VH+
Setting LiDAR Camera Heterogeneous
Method/Metric B AP@50/70 B AP@50/70 B AP@50/70
No Collaboration 0.00 68.83/54.27 0.00 15.43/4.97 0.00 44.20/30.57
Late 23.08 86.57/79.51 23.08 51.37/27.71 23.08 78.55/66.02
AttFuse 26.27 76.55/53.95 26.27 28.08/10.18 26.27 63.21/43.51
DiscoNet 26.27 80.13/61.15 26.27 35.16/12.42 26.27 67.59/47.17
V2VNet 26.27 90.06/85.73 26.27 64.18/43.40 26.27 87.96/80.13
HMViT 26.27 89.55/80.79 26.27 57.05/26.19 26.27 86.89/71.61

Where2comm

0.00 68.54/54.04 0.00 15.29/ 4.92 0.00 43.75/30.27
17.25 85.39/79.44 16.49 50.16/25.94 16.90 77.16/63.60
18.77 89.71/85.14 18.57 58.99/38.75 18.66 85.33/78.39
22.63 90.76/85.36 25.81 65.05/47.66 25.01 88.19/83.31
26.27 90.77/85.53 26.27 67.28/48.90 26.27 88.42/79.63

CodeFilling

0.00 68.54/54.04 0.00 15.29/4.92 0.00 43.75/30.27
8.10 85.65/75.14 6.26 35.40/13.69 6.41 65.15/46.61
9.27 87.38/77.90 8.40 43.79/20.01 8.30 75.47/56.74

13.22 89.90/85.79 12.29 55.11/31.59 12.21 82.90/71.88
16.04 90.53/86.94 18.92 63.89/43.78 18.15 87.43/80.45
19.51 90.66/86.99 19.51 66.39/47.77 19.51 88.05/80.98
25.60 90.82/88.19 25.61 67.39/51.16 25.61 88.58/83.65



Table 3. Robustness to pose error on DAIR-V2X.

Dataset DAIR-V2X
Method/Metric AP30/AP50↑
Noise Level σt/σr(m/◦) 0.0/0.0 0.2/0.2 0.4/0.4 0.6/0.6 1.0/1.0
No Collaboration 71.35/67.27 71.35 /67.27 71.35 /67.27 71.35 /67.27 71.35 /67.27
Late 77.39/69.53 76.66 /67.04 72.49 /59.92 67.67 /54.89 59.57 /50.17
AttFuse 72.40/64.87 72.01 /64.22 70.96 /62.89 69.36 /61.82 67.43 /60.98
V2VNet 83.98/79.28 83.51 /77.13 81.19 /71.88 75.15 /67.92 71.69 /62.74
Where2comm 84.50/79.39 84.03 /77.12 81.02 /70.31 76.62 /64.92 69.89 /59.10
CodeFilling 84.52/79.99 84.05 /78.05 81.69 /72.58 78.10 /68.47 72.68 /67.99

Table 4. Robustness to pose error on OPV2VH+.

Dataset OPV2VH+
Method/Metric AP50/AP70↑
Noise Level σt/σr(m/◦) 0.0/0.0 0.2/0.2 0.4/0.4 0.6/0.6 1.0/1.0
No Collaboration 68.83 /54.27 68.83 /54.27 68.83 /54.27 68.83 /54.27 68.83 /54.27
Late 86.86 /79.70 85.24 /57.63 63.86 /31.02 44.13 /21.83 28.90 /17.26
AttFuse 76.56 /53.97 75.98 /51.58 72.95 /43.20 66.19 /32.93 49.08 /20.15
V2VNet 90.06 /85.76 89.74 /80.52 86.24 /58.30 74.63 /35.93 44.59 /14.34
Where2comm 90.77 /85.53 90.20 /80.23 83.33 /55.33 68.52 /28.48 29.07 /7.44
CodeFilling 90.82 /88.19 90.29 /82.38 84.23 /62.61 74.28 /57.12 72.53 /55.90

Table 5. Robustness to communication latency on DAIR-V2X.

Dataset DAIR-V2X
Method/Metric AP30/AP50↑
Latency Level (ms) 0 100 200 300 500
No Collaboration 71.35 /67.27 71.35 /67.27 71.35 /67.27
Late 77.37 /69.53 76.81 /66.74 72.91 /61.85 69.82 /60.46 67.11 /60.18
AttFuse 72.39 /64.83 72.04 /64.03 70.92 /63.40 70.68 /63.35 69.50 /62.84
V2VNet 83.98 /79.28 83.86 /77.75 81.65 /74.52 79.46 /72.51 76.33 /70.57
Where2comm 84.50 /79.39 84.22 /77.34 81.46 /72.69 78.49 /70.62 74.72 /68.92
CodeFilling 84.52 /79.99 84.27 /78.34 82.08 /74.73 80.10 /72.83 76.95 /71.50

Table 6. Robustness to communication latency on OPV2VH+.

Dataset OPV2VH+
Method/Metric AP50/AP70↑
Latency Level (ms) 0 100 200 300 500
No Collaboration 68.83 /54.27 68.83 /54.27 68.83 /54.27 68.83 /54.27 68.83 /54.27
Late 86.87 /79.68 75.85 /34.62 39.17 /23.91 32.04 /23.46 34.18 /26.30
AttFuse 76.55 /53.95 64.90 /22.95 34.92 /14.38 24.75 /12.63 20.62 /12.03
V2VNet 90.07 /85.73 83.03 /41.23 46.97 /18.04 31.56 /18.30 29.17 /22.68
Where2comm 90.77 /85.53 83.31 /36.74 40.10 /14.69 21.73 /11.78 14.03 /10.00
CodeFilling 90.82 /88.19 85.29 /59.63 75.16 /58.67 73.69 /57.31 71.53 /55.84



(a) LiDAR

(b) Camera 0 (c) Camera 1 (d) Camera 2 (e) Camera 3

(f) Depth 0 (g) Depth 1 (h) Depth 2 (i) Depth 3

Figure 3. Each agent is equipped with 1 LiDAR, 4 cameras, and 4 depth sensors in OPV2VH+.



(a) Agent 0: LiDAR 0 (b) Agent 0: Camera 0 (c) Agent 0: Depth 0

(d) Agent 1: LiDAR 0 (e) Agent 1: Camera 0 (f) Agent 1: Depth 0

(g) Agent 2: LiDAR 0 (h) Agent 2: Camera 0 (i) Agent 2: Depth 0

(j) Agent 3: LiDAR 0 (k) Agent 3: Camera 0 (l) Agent 3: Depth 0

(m) Agent 4: LiDAR 0 (n) Agent 4: Camera 0 (o) Agent 4: Depth 0

Figure 4. Agents 0 through 4 in a data sample comprising 10 agents from the OPV2VH+ dataset.



(a) Agent 5: LiDAR 0 (b) Agent 5: Camera 0 (c) Agent 5: Depth 0

(d) Agent 6: LiDAR 0 (e) Agent 6: Camera 0 (f) Agent 6: Depth 0

(g) Agent 7: LiDAR 0 (h) Agent 7: Camera 0 (i) Agent 7: Depth 0

(j) Agent 8: LiDAR 0 (k) Agent 8: Camera 0 (l) Agent 8: Depth 0

(m) Agent 9: LiDAR 0 (n) Agent 9: Camera 0 (o) Agent 9: Depth 0

Figure 5. Agents 5 through 9 in a data sample comprising 10 agents from the OPV2VH+ dataset.
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