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A. Network Structure
In this paper, MeTTA is implemented by a convolutional
architecture for simplicity, where the backbone can replace
SimpleBaseline [9] and HRNet [7] with a more complex
structure. We complement the heatmap bottleneck in the
primary network and the specific structure of the auxiliary
network in detail.

A.1. Heatmap Bottleneck

In [3], the heatmap bottleneck is proposed to learn to extract
keypoint-like structures from the input image. After the
original self-supervised heatmaps ỹself ∈ RW ′×H′×K are
yielded, the heatmap bottleneck standardizes them into the
Gaussian-like heatmaps ŷself . Specifically, each heatmap
is first converted to a keypoint uk via Softmax:

uk =

∑
u∈Ω u · exp(ỹselfk (u))∑
u∈Ω exp(ỹselfk (u))

, (1)

where we use Ω to denote the image range and u to denote
the 2D coordinates in it. Then, we place the center of the
Gaussian kernel with a fixed standard deviation σ on this
series of keypoints {u1, ..., uK} as:

ŷselfk (u) = exp

(
− 1

2σ2
∥u− uk∥2

)
, (2)

to obtain the self-supervised heatmaps ŷself . In MeTTA,
the output of the heatmap bottleneck as pose information
is used to guide our auxiliary task, i.e. body-specific image
inpainting. During inference, minimizing the auxiliary loss
can fine-tune self-supervised keypoints to match the human
body in the test image.

A.2. Auxiliary Network

In MeTTA, the auxiliary network is designed to achieve
body-specific image inpainting. In pursuit of generating
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Figure 1. The structure of the auxiliary network. The first layer of
the two encoders is a 7×7 convolution, and the other convolutional
layers in the auxiliary network are all 3 × 3. Downsampling is
implemented by convolution with stride of 2, and upsampling uses
nearest neighbor interpolation.

Backbone Hea. Sho. Elb. Wri. Hip Kne. Ank. Mean

ResNet-101 97.3 96.1 90.9 85.9 90.0 87.3 84.2 90.6
HRNet-W32 97.4 96.2 91.5 87.7 90.5 88.6 85.4 91.4
TokenPose 97.3 96.3 91.8 88.0 90.6 88.8 85.2 91.5

Table 1. Performance of MeTTA with different backbones on
MPII [1]. In general, MeTTA is able to match most heatmap-based
methods, with only their last few layers modified.

as realistic content as possible for missing patches, most
image inpainting methods have complex network structures
[6] and tedious optimization processes [11]. In contrast, the
main purpose of image inpainting in test-time adaptation is
to provide a self-supervisory signal during inference. Thus,
more important than the authenticity of reconstruction is the
ability to capture human body information. In addition, the
auxiliary network should be simple enough to satisfy the
efficiency of fine-tuning.

Our auxiliary network consists of two encoders ϕapp and
ϕpos, as well as a decoder ψ, as shown in Fig. 1. Taking
the masked image as input, ϕapp is a fully convolutional
network, which aims to extract appearance features F app

from the remaining pixels. The number of feature channels
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k = 1 k = 2 k = 3 k = 4 k = 5

Penn Action [10] 86.32 86.76 87.11 87.38 87.60
Human3.6M [2] 88.50 89.24 89.74 90.05 90.16

Table 2. The accuracy after each gradient descent during test time.
The total number of iterations K is set to 5 in meta-learning.

GT images mask size=30 mask size=40 mask size=60 mask size=80

Figure 2. Results of image inpainting under restricted appearance
information. After joint training, we reduce the available visual
information by increasing the mask size. Thanks to the presence
of pose information, there is a clear body contour in the restored
image even if the human body is almost completely masked.
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Figure 3. The effect of pose information on image inpainting. The
first and second rows are the restored images with and without
pose information, respectively. The results demonstrate that the
pose information significantly improves the quality of restoration.

increases to 64, 128 and 256 in turn, and the resolution is at
last compressed to W

8 × H
8 . To strengthen the connection

between the primary and auxiliary tasks, MeTTA uses the
self-supervised heatmaps ŷself to guide the the generation
of the missing patch, which is better than simply using a
shared encoder like [8]. To obtain the pose features F pos,
ϕpos upsamples ŷself and then encodes it with a structure
that differs from ϕpos only in the input dimension. F app

and F pos are concatenated in the channel direction fed to
ψ to predict the missing patch. The decoder ψ consists of
convolution and upsampling alternately.

B. Additional Results

In this section, we conduct supplementary experiments and
provide visualization to more comprehensively analyze the
superiority of our MeTTA as below.

Results with different backbones. We have shown that
our meta-auxiliary learning framework is compatible with
convolution-based pose estimation methods, represented by
SimpleBaseline [9] and HRNet [7]. Here we use TokenPose
[5] as the backbone to prove that the proposed MeTTA is
also suitable for Transformer-based methods, as shown in
Table 1. Since the backbone used for feature extraction is
frozen after joint training, the part of the computation cost
involving test-time adaptation is unchanged.

Process of test-time adaptation. In our experimental
setup, we demonstrate by ablation that K = 5 is a suitable
number of updates. In order to better evaluate the process of
test-time training, we give the accuracy of the meta-learned
model after each gradient descent during inference on Penn
Action [10] and Human3.6M [2], as shown in Table 2. The
experimental results show that as the network weights are
updated iteratively, the performance of the primary network
is steadily improved.

Effectiveness of the auxiliary task. In our MeTTA, the
self-supervised heatmaps are used as a bridge to connect the
primary and auxiliary tasks. In the body-specific image in-
painting task, the influence of pose information determines
whether our method can accurately utilize human-related
semantics to achieve test-time adaptation. To prove that the
auxiliary task depends on the primary task, we debug the
appearance information and pose information during image
inpainting, respectively. As shown in Fig. 2, even if the
appearance cues are completely removed, the model can
still restore clear body contours based on the self-supervised
heatmaps. Without the guidance of pose information, the
restoration of the human body in the missing patch suffers
from performance degradation, as shown in Fig. 3.

C. Analysis of Test-Time Adaptation in HPE
In human pose estimation (HPE), there are two works TTT
[8] and TTP [4] related to test-time adaptation. In contrast,
the main contribution of MeTTA is the use of meta-learning
instead of multi-task learning for accurate adjustment and
fast adaptation during inference. The superiority of meta-
auxiliary learning has been fully explained in the main text
and will not be repeated here. In addition, we propose a
better auxiliary task, body-specific image inpainting. In
the following, we analyze the shortcomings of the test-time
adaptation methods in HPE to highlight the advantages of
our auxiliary task.

In TTT [8], image rotation prediction is used to update
the network weights via self-supervised learning during test
time. On the one hand, only a small part of the pixels in the
input image belong to the human body. On the other hand,
some vision cues (such as the sky and grass) provide enough
evidence for judgment. As a result, it is difficult to adjust
the source model according to human-related semantics in
the test image, which limits the performance of TTT.
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As for TTP [4], with the help of unsupervised landmark
detection [3], although remarkable performance has been
made, some restrictions have been introduced. For example,
TTP cannot achieve test-time adaptation based on a single
image due to the need for image pairs of the same person. In
addition, unsupervised landmark detection requires that two
input images have the same background, which is not true
in most video-based datasets. The superior performance of
TTP is of little significance at the cost of the limitations of
application scenarios.

D. Limitations and Discussion
MeTTA introduced in this paper uses only a single auxiliary
task, body-specific image inpainting, to achieve test-time
adaptation for human pose estimation. Intuitively, adopting
a combination of self-supervised tasks allows for a more
comprehensive perception of the differences between the
source and target domains. Besides, while meta-auxiliary
learning accelerates test-time adaptation, multiple iterations
during inference bring a certain amount of computation.
Therefore, the lightweight of the auxiliary network is one
of our future work.
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