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1. Implementation Details

Implementation Details of GauHuman Our pose refine-
ment module consists of 4 fully connected layers, i.e., an
input layer, 2 hidden layers, and one output layer. Each layer
is followed by a ReLU activation. The dimension of the
hidden layer is 128, while the input and output dimension
of the pose refinement module is 69. The LBS offset mod-
ule adopts 5 fully connected layers with an input layer, 3
hidden layers, and one output layer. The ReLU activation
is used after each layer. Positional encoding is applied to
the 3D Gaussian positions before they are fed into the input
layer. The input and output dimensions of the LBS offset
module are 63 and 24 (number of joints). We use Adam
optimizer with a learning rate 10−5 to optimize the above
two modules. We set the threshold of KL divergence as 0.4
to perform split/clone operations. Other training details for
3D Gaussians are the same as [5].

Evaluation Metrics. To quantitatively evaluate the quality
of rendered novel view and novel pose images, we report the
peak signal-to-noise ratio (PSNR) [15], structural similarity
index (SSIM) [17] and Learned Perceptual Image Patch
Similarity (LPIPS) [21].

Details of Comparable Methods. 1). Subject-specific
optimization-based methods. Neural Body (NB) [12] en-
codes latent codes in SMPL vertex points and uses them to
learn the neural radiance fields. Animatable NeRF (AN) [11]
learns a canonical human NeRF through skeleton-driven de-
formation and learned blend weight fields. AS[13] further
extends [11] by learning a signed distance field and a pose-
dependent deformation field for residual information and
geometric details of dynamic 3D humans. HumanNeRF [18]
incorporates a pose refinement module, LBS field, and non-
rigid deformation module to optimize a volumetric repre-
sentation of 3D humans in the canonical space. DVA [14]
extends mixtures of volumetric primitives [9] to articulated
3D humans for high-quality telepresence. InstantNVR [1]
and InstantAvatar [4] propose to use multi-hashing encoding
for fast training of 3D humans. 2). Generalizable methods.
PixelNeRF [20] learns a neural network to infer the radiance
field based on the input image. Neural Human Performer

(NHP) [7] aggregates pixel-aligned features at each time step
and temporally-fused features to learn generalizable neural
radiance fields. For generalizable methods, we evaluate each
subject (e.g., one subject of MonoCap) by first pre-training
the model on the other data set (e.g., ZJU_Mocap data set)
and then fine-tuning it on the evaluated subject.
Efficient Implementation of KL Divergence The Kull-
back–Leibler (KL) divergence of two 3D Gaussians is com-
puted as follows:
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where p0, Σ0, p1, Σ1 are the position and covariance matrix
of two 3D Gaussians G(x0) and G(x1).

As the covariance matrix is decomposed into the prod-
uct of rotation and scaling matrices Σ = RSSTRT , we
simplify the computation of matrix inverse and determinant
operations, i.e.,

Σ−1
1 = (RSSTRT )−1 = RS−1S−1RT ,

detΣ1 = det(RSSTRT ) = det(S) ∗ det(S)
(2)

Since scaling matrix S is a diagonal matrix, the inverse and
determinant of a diagonal matrix can be easily derived by
inversing and prodding the diagonal elements respectively.
Meanwhile, the inverse of the orthogonal rotation matrix
is the transpose of the original matrix. The above simpli-
fication saves the computation time for matrix inverse and
determinant operation.

2. Details of Loss Functions
Photometric Loss. Given the ground truth target image C
and predicted image Ĉ, we apply the photometric loss as
follows:

Lcolor = ||Ĉ − C||2. (3)

Mask Loss. We also leverage the human region masks for
Human NeRF optimization. The mask loss is defined as:

Lmask = ||M̂ −M ||2, (4)
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where M̂ is the accumulated volume density and M is the
ground truth binary mask label.
SSIM Loss. We further employ SSIM to ensure the struc-
tural similarity between ground truth and synthesized images,
i.e.,

LSSIM = SSIM(Ĉ, C). (5)

LPIPS Loss. The perceptual loss LPIPS is also utilized to
ensure the quality of rendered image, i.e.,

LLPIPS = LPIPS(Ĉ, C). (6)

In summary, the overall loss function contains four compo-
nents, i.e.,

L = Lcolor + λ1Lmask + λ2LSSIM + λ3LLPIPS , (7)

where λ’s are loss weights. Empirically, we set λ1 = 0.5,
λ2 = λ3 = 0.01 to ensure the same magnitude for each loss.

3. Rotating Spherical Harmonic coefficients
When transforming 3D Gaussians from canonical space to
posed space, the SH coefficients should also be rotated for
view-dependent color effects. The above is achieved by first
computing a Wigner D-matrix [19] and then rotating SH co-
efficients with the Wigner D-matrix. In our implementation,
we find that rotating SH coefficients has little effect on the
final performance1, so we do not consider it in our work.

4. Further Analysis
Evaluations on novel poses. For each subject in
ZJU_MoCap [12] and MonoCap [2, 3, 13], we collect 20
frames for novel pose synthesis by sampling 1 frame every
10 frames. We show the performance comparison of novel
pose synthesis as follows. As shown in the table, GauHuman
outperforms baselines. Note that PixelNeRF, NeuralBody,
and InstantNVR are unsuitable for novel pose synthesis.

Table 1. Quantitative Novel Pose evaluation of our GauHuman
and baseline methods on the ZJU_MoCap and MonoCap data sets.
LPIPS∗ = 1000 × LPIPS. For a fair comparison, we do not con-
duct test-time optimization of SMPL parameters with images
from the test set on InstantAvatar [4].

Method ZJU_MoCap MonoCap
PSNR↑ SSIM↑ LPIPS∗↓ PSNR↑ SSIM↑ LPIPS∗↓

AN 28.64 0.952 47.74 30.67 0.981 19.14
AS 30.42 0.963 37.70 32.78 0.984 16.27
HumanNeRF 30.47 0.962 27.31 31.63 0.983 14.18
DVA 29.31 0.955 38.79 32.27 0.982 16.44
InstantAvatar 29.50 0.934 76.37 27.75 0.945 68.20
GauHuman 31.29 0.965 29.89 33.00 0.984 13.95

Scale to in-the-wild datasets. We generalize GauHuman
to an in_the_wild monocular online video. We use EasyMo-
cap [16] to predict SMPL pose parameters and SAM [6] to

1We also find that the implementation of Wigner D-matrix using Py-
torch [10] is time-consuming due to the matrix exponential operation.

predict human masks for the monocular online video. We
sample 1 frame every 5 frames and collect 100 frames for
training. To evaluate novel view and novel pose synthe-
sis results, we follow the same setting as ZJU_Mocap and
MonoCap. As shown in Fig. 1, GauHuman produces plau-
sible results and surpasses the state-of-the-art InstantAvatar
baseline. Note that the pose refinement module can help
refine human pose parameters (e.g., foot) for accurate 3D
human reconstruction. One example is shown in Fig. 2.

Ground Truth Reconstruction Novel View Novel Pose

GauHuman: 2 min (training time), 175 FPS

InstantAvatar: 9 min (training time), 3.9 FPS
Figure 1. Visualization results produced by our GauHuman and the
state-of-the-art InstantAvatar baseline method on an in_the_wild
data set. The bottom lines show the training time and rendering
speed. Zoom in for the best view.
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Figure 2. Visualization comparison results produced by our GauHu-
man w/ and w/o pose refinement module. Zoom in for the best
view.

Effects of the number of 3D Gaussians on quality and
speed. According to our experiments, increasing the number
of 3D Gaussians leads to limited performance improvement,
but consumes more computation time. For example, it takes 1
hour for 100k Gaussian points to converge to a 28.01 PSNR;
while our GauHuman only needs 55s to achieve a 28.08
PSNR with 13k Gaussians.
Number of 3D Gaussians across different datasets. Ac-
cording to our analysis, the number of 3D Gaussians varies
on different datasets, depending on the resolution and ac-
curacy of SMPL and camera parameters. For six subjects



(512x512p) in Zju_Mocap, the number of 3D Gaussians
is around 13k; for two subjects belonging to DeepCap
(1024x1024p) in MonoCap dataset, the number of 3D Gaus-
sians is around 16k; for the remaining two subjects belonging
to DynaCap (1285×940p) in MonoCap dataset, the number
is around 22k.
Using constant KL to perform only splitting and cloning
operations. We experiment on sequence 386 of the
Zju_Mocap dataset. If only constant KL is used to perform
split and clone operations, this will lead to a large number
(up to 200k) of 3D Gaussians with a final performance PSNR
of 27.88 (vs 28.08 PSNR of our GauHuman). The magni-
tude of the scaling matrix and gradients of positions are also
important metrics for performing split or clone operations.
Convergence speed of initializing the scene with 13k
points from SMPL(initial points can share same points
from SMPL vertices) without performing splitting,
cloning, and pruning operations. We ablate the experi-
ments on sequence 386 of the Zju_Mocap dataset and find
that it takes about 6 times more time to converge to a worse
performance (PSNR: 27.35) than ours (PSNR: 28.08) when
initializing the scene with 13k points without performing
splitting, cloning, and pruning operations.
Additional experiments on DNA-Rendering We further
evaluate the performance of our GauHuman and two repre-
sentative baseline methods on a DNA-Rendering data set.
We select two sequences (0012_09 and 0025_11 from part 1)
from the DNA-Rendering data set and collect 100 frames for
training. Similar to ZJU_MoCap and MonoCap, one camera
is used for training. For evaluation purposes, we use four
nearby camera views as testing views. As shown in Tab. 2
and Fig. 3, AS [13] and InstantAvatar [4] struggle to produce
photorealistic renderings due to the complex clothing and
fast-moving human actors recorded on the DNA-Rendering
data set. In comparison, our GauHuman learns high-quality
3D human performers with fast training and rendering speed,
which verifies the flexibility and efficiency of 3D Gaussian
Splatting.
Table 2. Quantitative comparison of our GauHuman and baseline
methods on the DNA-Rendering data set. LPIPS∗ = 1000 × LPIPS.
Frames per second (FPS) are measured on an RTX 3090.

Method DNA-Rendering
PSNR↑ SSIM↑ LPIPS∗↓ Train FPS

AS [13] 27.67 0.954 50.99 10h 0.14
InstantAvatar [4] 24.77 0.922 78.55 20m 0.48
GauHuman(Ours) 29.11 0.961 37.68 4m 152

Comparison with concurrent work GART [8] Our concur-
rent work GART [8] also extends Gaussian Splatting to 3D
human modelling with monocular videos. It achieves com-
parable novel view synthesis performance when compared
with state-of-the-art baseline methods on ZJU_MoCap data
set while improving the rendering speed to 77 FPS with the
efficient 3D Gaussian Splatting technique. We reproduce

GT

Training:
Rendering:

GauHuman InstantAvatar AS

4 min
152 FPS

20 min
0.48 FPS

10 h
0.19 FPS

Figure 3. Novel view synthesis results produced by our GauHuman
and baseline methods on DNA Rendering data set. The bottom
lines show the training time and rendering speed of each method
on the DNA Rendering data set. Zoom in for the best view.

Table 3. Quantitative comparison of our GauHuman and GART on
the ZJU_MoCap data set. LPIPS∗ = 1000 × LPIPS. Frames per
second (FPS) is measured on an RTX 3090. For a fair comparison,
we do not conduct test-time optimization of SMPL parameters
with images from the test set on GART [8].

Method
ZJU_MoCap (Avg)

PSNR↑ SSIM↑ LPIPS∗↓ #Gau Train FPS

GART 30.91 0.9615 31.83 53.4k 3m 77
GauHuman (Ours) 31.34 0.9647 30.51 11.8k 1m 189

my_377

GART 31.90 0.9747 18.8 55.0k
GauHuman (Ours) 32.24 0.9757 18.9 12.6k

my_386

GART 33.50 0.9669 29.9 51.4k
GauHuman (Ours) 33.72 0.9693 29.0 13.1k

my_387

GART 27.74 0.9518 40.3 52.9k
GauHuman (Ours) 28.19 0.9564 39.3 9.9k

my_392

GART 31.92 0.9637 32.6 51.6k
GauHuman (Ours) 32.27 0.9669 30.2 11.3k

my_393

GART 29.34 0.9540 37.9 51.7k
GauHuman (Ours) 30.24 0.9584 35.2 11.0k

my_394

GART 31.08 0.9577 31.5 57.7k
GauHuman (Ours) 31.42 0.9611 30.6 12.8k

the result of GART with their released code and show the
comparison results in Tab. 3. For a fair comparison, we
do not conduct test-time optimization of SMPL parameters



with images from the test set on GART [8]. In comparison
with GART, our GauHuman produces slightly better novel
view synthesis performance with both faster training (1m vs.
3m) and rendering (189FPS vs. 77FPS) speed. Specifically,
we achieve fast optimization of GauHuman by initializing
and pruning 3D Gaussians with 3D human prior, while split-
ting/cloning via KL divergence guidance, along with a novel
merge operation for further speeding up. Notably, without
sacrificing rendering quality, GauHuman can fast model the
3D human performer with ∼13k 3D Gaussians.
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