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Supplementary Material

In the supplementary material, we begin by presenting
the implementation details of our method in Sec. 6. Follow-
ing that, we provide information on the proposed dataset in
Sec. 7, conduct the training & running time comparison in
Sec. 8, and demonstrate the motion optimization compar-
ison in Sec. 9. Finally, we showcase challenging cases in
Sec. 10 and present hand animation results in Sec. 11.

6. Implementation Details

6.1. Model Architecture

We first estimate the SMPL model for all videos in three
datasets. The input to the pose encoder is the UV map
of the SMPL model, which has a resolution of 128 ×
128 × 3. We adopt a standard U-Net architecture as the
pose encoder, comprising five blocks of [Conv2d, Batch-
Norm, LeakyReLU], followed by five blocks of [ReLU,
ConvTranspose2d, BatchNorm]. Note that we omit the
BatchNorm in the final block.

The optimizable feature tensor has the same resolution
as the output of the pose encoder, which is 128 × 128 ×
64. During the first training stage, we train it using an auto-
decoding approach. Subsequently, the output of the pose
encoder is integrated into the optimized feature tensor be-
fore being input to the Gaussian parameter decoder. To
achieve finer details, we conduct a 4× upsampling of the
combined feature tensor, resulting in a dimension of 512 ×
512 × 64. The resulting output of 3D Gaussians consists of
nearly 200,000 points.

The Gaussian parameter decoder comprises an 8-layer
Multi-Layer Perceptron (MLP) followed by three predic-
tion heads. The dimensions of the intermediate layers of
the MLP are (128, 128, 128, 256, 128, 128, 128, 64), incor-
porating a skip connection from the input to the 4th layer.
Each prediction head consists of a 2-layer MLP designed to
predict offsets ∆x̂, colors ĉ, and scales ŝ, respectively.

6.2. Training

We first train the optimizable feature tensor and the Gaus-
sian parameter decoder concurrently with motion optimiza-
tion. During this stage, we employ the Adam optimizer with
specific learning rates: 3.0× 10−3 for the Gaussian param-
eter decoder, 5.0× 10−4 for the optimizable feature tensor,
and 5.0× 10−3 for motion optimization. We train them for
a duration of 200 epochs. Following this, we generate UV
positional maps of SMPL models corrected by optimized
motions. After the first stage of training, we suspend the

Sequence Total Train Validation Test
male-1 978 782 98 98
female-1 972 778 97 97

Table 4. Data distribution. Number of frames in each sequence
used for training, validation, and testing.

Methods HumanNeRF InstantAvatar Ours
Training time ∼ 13 h ∼ 1 min ∼ 30 min
Running time 0.22 FPS 3.87 FPS 35 FPS

Table 5. Training and running time comparisons.

Figure 8. Results of inaccurate segmentation. We showcase the
artifacts resulting from the inaccurate segmentation boundary.

training of the optimized feature tensor and combine it with
the output of the pose encoder. We proceed to train the pose
encoder and fine-tune the Gaussian parameter decoder for
an additional 200 epochs.

7. Dataset Details

We take the same settings in NeuMan for partitioning the
proposed DynVideo dataset. The dataset details are as
shown in Table 4.

8. Training and Running Time Comparison

Here we compare the inference speed of GaussianAvatar
with two NeRF-based methods, HumanNeRF and Instan-
tAvatar. As shown in Table 5, we measure the training and
running time in the People-Snapshot dataset.



Figure 9. Results of loose clothing. (a) is the ground truth, (b)
and (c) are the rendered image and Gaussian points.

Figure 10. Results of motion optimization comparison. (a)
Original image , (b) our optimized SMPL, (c) refined SMPL by
InstantAvatar, (d) initial SMPL.

Methods Initial motion InstantAvatar Ours
P-MPJPE 71.95 70.87 64.94

Table 6. Motion optimization comparison.

9. Motion Optimization Comparison
We directly evaluate the pose refinement of GaussianAvatar
and the SOTA InstantAvatar on two sequences in the 3DPW
dataset and one sequence in the DNA-Rendering dataset.
Both Table 6 and Fig. 10 show that our GaussianAvatar out-
performs InstantAvatar in pose refinement.

10. Challenging Cases
As discussed in the final section of the main paper, a major
limitation of our approach is attributed to the inaccuracies
in foreground segmentation in videos. As shown in Fig. 8,
the inaccuracies in the foreground segmentation boundary
may lead to our method predicting a black line on the sur-
face. Automatic segmentation tools do not always yield sat-
isfactory segmentation results. Manual operations on these
segmentations are time-consuming and inefficient. We be-
lieve that addressing this issue can be achieved by incorpo-
rating a scene model, akin to approaches such as NeuMan
and Vid2Avatar, which can contribute to more accurate seg-
mentation. We leave this for future work.

Figure 11. Results of hand animation. (a-d) Left: reposed image,
bottom right: reference pose.

Besides, modeling the dynamic appearance of dresses re-
mains challenging. As shown in Fig. 9, our method pro-
duces a blurred clothing appearance and fails to reconstruct
complete point clouds. The primary challenge stems from
the derived skinning weights from the SMPL model. Em-
ploying these skinning weights to model dresses may lead
to artifacts when generalized to new poses. The prospect
of predicting specific skinning weights for each subject is
promising. However, this data-driven approach necessitates
specific data sources. We intend to collect this kind of data
in future efforts.

11. Hand Animation
We observe that our method can be readily extended to hand
animation. To showcase its effectiveness in this context, we
estimate the underlying SMPL-X model to fit a sequence
from the DynVideo dataset. As depicted in Fig. 11, our
method demonstrates the capability to generate plausible
hand animation without the need for specific design consid-
erations. The prospect of extending our work to encompass
full-body avatars is promising, and we defer this to future
investigations.


