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Figure 1. We using the attention module from AHDR [12] as the
alignment module. Here, Xi represents 6-channel LDR images,
and the output features have C = 60 channels.

1. Model Details

Denoising Network: The network architecture is a modi-
fied version of the U-Net found in DDPM [2]; As shown
in Fig. 2, we replace the original DDPM residual blocks
with slightly modified nonlinear activation free blocks
(NAFBlocks)[9]. Nonlinear activation free means that we
replace all nonlinear activation functions with the “Simple-
Gate”, an element-wise operation that splits feature chan-
nels into two parts and then multiplies them together to pro-
duce the output. As illustrated in Fig.2, to make the model
share parameters across time, we add an additional multi-
layer perceptron to process the time embedding to channel-
wise scale and shift parameters γ and β, for both the atten-
tion layer and feed-forward layer. In practical applications,
we select C = 32, and employ four resolution depths in the
U-Net architecture, with channel multipliers of {1, 2, 4, 8}.
In both the encoder and decoder, each stage comprises two
NAFBlocks, while the middle stage specifically consists of
one NAFBlock. This results in the entire denoising network
containing 1.76M parameters.
DHRNet: DHRNet is comprised of multiple stacked Re-
construction Blocks, each including one Prior Integration
Module (PIM) 3 (a) and several Feature Refinement Mod-
ules (FRM) 3 (b). In practical applications, the number
of FRMs in each block is set to 3, and C is configured as
60. In PIM, N is set to 3. The downsampling kernel sizes
for avgpool in PIM and FRM are set as 4 and 2, respec-
tively. It is noteworthy that DHRNet does not directly uti-
lize LDR images as input; instead, it employs an alignment
module (AM) to obtain implicitly aligned features as in-
put. As depicted in Fig. 1, we utilize the Attention Network
from AHDR [12] to process various LDR images, extract-
ing implicitly-aligned features for input to DHRNet.

2. Algorithm

Our LF-Diff consists of two training stages. After com-
pleting the first pretraining phase for LF-Diff, the algorithm
for the second stage LF-Diff training is outlined in Algo-
rithm 1. The algorithm for LF-Diff inference is summarized
in Algorithm 2.

3. Perceptual Metrics

As indicated in Table 1, we additionally computed vari-
ous common perceptual metrics, including FID [1], LPIPS
[15], VSI [14], and AHIQ [6]. Due to the domain differ-
ences between HDR images and natural images, tonemap-
ping was applied to both the generated results and ground
truth (GT) for computing perceptual metrics. This approach
enables a more accurate evaluation of the quality of the gen-
erated images. It can be observed that, compared to DNN-
based methods, DDPM-based methods typically exhibit su-
perior perceptual metrics. Our approach maintains excellent
perceptual metric performance while being 10× faster than
the previous diffusion-model-based method DiffHDR.

4. Additional Qualitative Results

In this section, we present additional qualitative results
that we did not show in the main text due to the limited
space of paper. In Figs. 4 show visual results for various
motion cases in Kalantari’s dataset [5] and Hu’s dataset [4].
Fig. 5 and 6 provide additional qualitative results without
ground truth.
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Algorithm 1 DM Training

Input:
LDRs-HDR image pairs (Xi, H),
Total diffusion step T , implicit sampling step S, Noise schedule βt(t ∈ [1, T ]).

1: Initialize: αt = 1− βt, ᾱT =
∏T

i=0 αi

2: Initialize: The DHRNet (contains AM and Conv3 × 3 behind DHRNet) of LF-Diff copies the parameters of trained
LF-Diff from stage one.

3: repeat
4: t ∼ Uniform{1, · · · , T}
5: ϵt ∼ N (0, I)
6: z = LPENet (PixelUnshuffle ( Concat (H, T (H))))
7: D = LPENetDM (AM ( PixelUnshuffle (Xi)))
8: z0 = z
9: Take gradient descent step on Et,z0,ϵt [∥ϵt − ϵθ(

√
ᾱtz0 +

√
1− ᾱtϵt, t,D)∥2]

10: ẑT ∼ N (0, I)
11: for i = S : 1 do
12: t = (i− 1) · T/S + 1
13: tnext = (i− 2) · T/S + 1 if i > 1, else 0
14: ẑtnext

← √ᾱtnext

(
ẑt−

√
1−ᾱt·ϵθ(ẑt,D,t)√

ᾱt

)
+

√
1− ᾱtnext · ϵθ (ẑt, D, t)

15: end for
16: ẑ = ẑ0
17: Take gradient descent step on ∥ẑ − z∥1
18: Ĥ = Conv3× 3(DHRNet(AM(Xi), ẑ))
19: Take gradient descent step on Lr (paper Eq. (11))
20: until converged

Algorithm 2 LF-Diff Inference

Input:
LDRs images Xi, Total diffusion step T , implicit sampling step S,
Noise schedule βt(t ∈ [1, T ]), Trained LF-Diff

1: Initialize: αt = 1− βt, ᾱT =
∏T

i=0 αi

2: Reverse Process:
3: Sample ẑT ∼ N (0, I)
4: D = LPENetDM (AM ( PixelUnshuffle (Xi)))
5: for i = S : 1 do
6: t = (i− 1) · T/S + 1
7: tnext = (i− 2) · T/S + 1 if i > 1, else 0
8: ẑtnext

← √ᾱtnext

(
ẑt−

√
1−ᾱt·ϵθ(ẑt,D,t)√

ᾱt

)
+

√
1− ᾱtnext · ϵθ (ẑt, D, t)

9: end for
10: ẑ = ẑ0
11: Ĥ = Conv3× 3(DHRNet(AM(Xi), ẑ))
12: Output reconstructed HDR image Ĥ
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Figure 2. The diagram illustrates the U-Net architecture used for the Denoising Network. The dimensions W, H, and C correspond to the
width, height, and number of channels of the features respectively.

Table 1. Quantitative comparison of proposed network with several state-of-the-art methods on Kalantari’s [5] datasets.

Models GT Hu[3] Kalantari[5] AHDR[12] HDRGAN[10] ADNet[7] CA-ViT[8] DiffHDR[13] Ours

FID ↓ 0 37.27 33.3 9.43 9.32 12.42 5.91 6.20 5.73
LPIPS ↓ 0 0.0302 0.0341 0.0166 0.0159 0.0169 0.0132 0.0109 0.0099

VSI ↑ 100 96.38 98.27 99.13 99.3 98.97 99.36 99.48 99.52
AHIQ ↑ 50 34.07 42.61 46.83 47.2 46.6 46.57 47.82 47.84
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Figure 3. DHRNet consists of two modules: a Prior Integration Module (PIM) that fuses the LPR with intermediate features of DHRNet,
and a Feature Refinement Module (FRM) that further processes the fused features to HDR image.
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Figure 4. Qualitative results for various motion cases on the Kalantari’s dataset [5] and Hu’s dataset [4].



Figure 5. Qualitative results for various motion cases on the Tursun et al. [11] dataset.



Figure 6. Qualitative results for various motion cases on the Tursun et al. [11] dataset.
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