
LEAD: Exploring Logit Space Evolution for Model Selection

Supplementary Material

In this supplementary material, we first present theoreti-
cal proof of our approach. Next, we introduce implementa-
tion details about LEAD and conduct more ablation studies
for our approach to validate its effectiveness. Finally, we
provide performance comparisons under different measure-
ments and fine-tuning results of the ground-truth.

A. Theoretical Proof
Below, we will provide detailed proof of the theoretical re-
sults presented in the methodology section.
Notation. First, We recall the notation that we used in the
main paper as well as this appendix:
{X ,Y} denotes the downstream dataset. F denotes the
logit function. η denotes the learning rate. l denotes root
mean square of network widths. Φ denotes NTK matrix
when l approaching infinite. I denotes the identity matrix.
To simplify the notation, · denotes both dot product and
scalar multiplication, e·, ·2 denotes both scalar and matrix
power operations, and d×

d· denotes both differentiation of
scalar functions and the Jacobian matrix of vector functions.
Dynamical Equation. Subsequently, we provide the proof
for obtaining the continuous dynamical equation in Eq. (5)
of the main paper through the limit approximation method.
Conclusion 1. Consider an infinite-width neural network
F and a downstream dataset T = {X ,Y}. The evolution
process of the output logits Ft(X) will follow the following
differential equation:

dFt

dt
= −η · Φ · dLt

dFt
, F0 = loginit. (1)

Proof. We need to consider the variation trend of F . There-
fore, we calculate its derivative at time t according to the
definition:

dFt(X)

dt
= lim

∆t→0

Ft+∆t(X)−Ft(X)

∆t

= lim
∆t→0

F (X , θt+∆t)−F (X , θt)

∆t
.

(2)

Through Taylor’s theorem, we obtain the asymptotic series
decomposition of F concerning the variation of θ:

F (X , θt+∆t) = F (X , θt) +
dF (X , θt)

dθ
(θt+∆t − θt)

+O
(
(θt+∆t − θt)

2
)
,

(3)
where O(·) denotes a infinitesimal quantity which has the
same order with ·, describing the remainder of the asymp-
totic series. Meanwhile, according to the optimization of

the gradient descent, we can determine the equivalent ef-
fects in corresponding continuous time:

θt+∆t − θt = −η · dL (F (X , θt) ,Y)

dθ
·∆t,

O
(
(θt+∆t − θt)

2
)
= O

(
η2 · dLt

dθ
· dLt

dθ
·∆t2

)
= O

(
(∆t)

2
)
.

(4)

Combining Eq. (3) and Eq. (4), we obtain the asymptotic
series decomposition of F concerning the variation of t:

F (X , θt+∆t)−F (X , θt)

=
dF (X , θt)

dθ
(θt+∆t − θt) +O

(
(θt+∆t − θt)

2
)

=− η · dF (X , θt)

dθ
· dL (F (X , θt) ,Y)

dθ
∆t+O

(
(∆t)

2
)
.

(5)
Combining Eq. (2) and Eq. (5) and employing the property
of O(·), we can use limit approximation, discarding the re-
mainder terms with a limit value of 0, to determine the value
of the derivative:

dFt(X)

dt
= lim

∆t→0
−η · dF (X , θt)

dθ
· dL (F (X , θt) ,Y)

dθ

+O
(
(∆t)

2
)
/∆t

= −η · dF (X , θt)

dθ
· dL (F (X , θt) ,Y)

dθ

= −η · dFt

dθ
· dLt

dθ
.

(6)
where the last line simplifies the notation for convenience.
Through the chain rule, we have:

dFt

dt
= −η · dLt

dFt
·
(
dFt

dθ
· dFt

dθ

)
. (7)

Finally, through the definition and the constant-preserving
property of the NTK [15], we obtain the dynamical equation
with its initial value condition:

dFt

dt
= −η · Φ · dLt

dFt
, F0 = loginit. (8)

Closed-form Solution. Finally, we solve the ordinary dif-
ferential equation (ODE) in Eq. (8) through separation of
variables and integration along the time dimension. As a
commonly used scene in theoretical analysis, we consider

the case where L is Mean Squared Error loss. And we can
obtain concise closed-form solution as shown in Eq. (6) of
the main paper:

Conclusion 2. Consider the case where L is MSE loss. The
solution of logits Ft(X) to the equation presented in Eq. (8)
can be expressed as follows:

E (Ft (X)) =
(
I− e−ηΦ·t)Y + e−ηΦ·t · loginit. (9)

Proof. Due to dLt

dFt
= Ft − Y , we have:

dFt

dt
= −η · Φ · (Ft − Y) , F0 = loginit. (10)

In order to transform both sides of Eq. (10) into independent
differentials, we first introduce an integrating factor eηΦt:

eηΦt dFt = −ηΦ · eηΦt (Ft − Y) dt

⇔ eηΦt dFt + ηΦ · eηΦtFt dt = ηΦ · eηΦt · Y dt.
(11)

Through the differential properties of composite functions,
the left-hand side of Eq. (11) is equivalent to the differential
of a composite function:

eηΦt dFt + ηΦ · eηΦtFt dt

= eηΦt dFt + Ft de
ηΦt = d

(
Ft · enΦt

)
.

(12)

Combining Eq. (11) and Eq. (12), we get the following
equation whose left and right sides are determined by the
differential of independent composite functions:

d
(
Ft · enΦt

)
= Y d

(
eηΦt

)
. (13)

By integrating over the time dimension t, we have:

Ft · enΦt|t0 = Y · eηΦt|t0
⇔ Ft · enΦt −F0 = Y · (eηΦt − I).

(14)

Substituting the initial condition in Eq. (10), we obtain the
solution to the dynamical equation:

Ft (X) =
(
I− e−ηΦ·t)Y + e−ηΦ·t · loginit. (15)

Since the constant-preserving property of Φ requires taking
the expectation over the randomly initialized part of F , our
results need to take the expectation as well:

E (Ft (X)) =
(
I− e−ηΦ·t)Y + e−ηΦ·t · loginit. (16)

B. Implementation Details
The implementation of our method are presented in the sec-
tion of methodology and experiments. Additionally, we
present more detailed information and the pseudocode of
the overall algorithm in this section.
Classification Algorithm. In the experiments and ablation
study section of the main paper, we have explained the rea-
sons for choosing the SVM algorithm as classification al-
gorithm to obtain loginit. Here, we will provide a detailed

introduction to the Multi-class SVM. The original SVM is a
binary classifier, that can only handle two classes problems.
However, for multiclass problems, we can utilize the One-
vs-Rest (OvR) strategy [29]. For a problem with K classes,
we train K different binary classifiers, with each classifier
specifically addressing one class, treating it as the positive
class, and considering all other classes as negative. For a
given sample, predictions are made using these classifiers
and the prediction values are normalized to obtain the pre-
dicted probabilities (i.e., logits) for K classes.
Calculation of NTK. For the computation of the NTK,
we employ the approximation algorithm proposed in [20].
Specifically, we concatenate the model backbone with the
classification head, a randomly initialized MLP (with two
hidden layers of width 1024 and 2048). The combination of
these two parts constitutes F to output logits. Subsequently,
we calculate the NTK using the following equation:

Φi,j(X ,X) =

[
∇θ

K∑
k=1

F (k) (xi, θ)

][
∇θ

K∑
k=1

F (k) (xj , θ)

]
(17)

where Φi,j denotes the element of i-th row and j-th column
in Φ. xi denotes i-th sample of X . K denotes the out-
put dimension of F , F (k) denotes the k-th output dimen-
sion and ∇ is only utilized on the MLP for efficiency. The
computation method in Eq. (17) reduces the computational
cost of the NTK. Meanwhile, [20] provides both theoretical
proof and experimental validation that the eigenvalue range
obtained through this approximation is close to that of the
original computation method in [15].
Pseudocode. We provide the pseudocode for our LEAD to
demonstrate the complete computation procedure.

C. More Ablation Study and Visualization
C.1. Initial State Observation

To capture the observation of loginit, we feed features and
labels of downstream datasets into a classifier that can out-
put the probability of each class. We evaluate several com-
monly used machine learning algorithms SVM [29], LDA
[19], and GMM [22], comparing their impact on perfor-
mance. As shown in Fig. 1, it’s noteworthy that, whatever
the classifier employed, direct utilization of loginit fails to
yield satisfactory results due to overlooking the training dy-
namics. Conversely, the application of LEAD consistently
improves all results to exceed the prior SOTA. This demon-
strates that LEAD does not rely on a specific classifier and
has uniform applicability to different classifier selections.

C.2. Different Interpolation Strategies

In our method, we use eigenvalues of the class-aware NTK
matrix to determine the interpolation coefficient. In this
section, we implement other strategies for comparison in

Algorithm 1: The algorithm of our method LEAD
Input: Downstream dataset {X ,Y}, with K classes; Model zoo

{Ψi}mi=1 with their backbone {fi}mi=1; The sample size
hyper-meter S for class-aware decomposition; The time
hyper-parameter t.

Output: The transferability score {Pi}mi=1 for each model in the
model zoo and the predicted rank.

1 for Ψi in Model zoo do
2 Encode images X to feature embeddings and feed features

and corresponding labels into the classification algorithm C
to obtain initial state logits:

3 Z = fi(X), loginit = C(Z,Y);
4 Concatenate a randomly initialized MLP h as a classifica-

tion head after its backbone f and combine them as logit
function F = h ◦ f .

5 for k in range(K) do
6 Select S samples Xk := {xki

}Si=1 from k-th class.
7 Compute the NTK matrix for this class:

8 Φu,v(Xk,Xk) =
[
∇θ

∑K
j=1 F(j) (xku , θ)

]
·

9
[
∇θ

∑K
j=1 F(j) (xkv , θ)

]
;

10 for 1 ≤ u, v ≤ K.
11 Employ eigenvalue decomposition to Φ(Xk,Xk) and

obtain the mean of eigenvalues λ.
12 We can get the prediction value of the final state logits

of samples belonging to this class:
E (Ft (x)) =

(
I− e−λ·t

)
y + e−λ·t · loginit(x);

13 for x belonging to the k-th class.
14 end
15 Feed the predicted final state logits Ft (X) and ground-

truth label Y into the Cross-Entropy loss to obtain the
score Pi for the model Ψi.

16 end
17 Rank models {Ψi}mi=1 according to their scores {Pi}mi=1.

Figure 1. Performance comparison of our method under different
classifier selection to compute loginit.

Fig. 2. Specifically, ‘Constant’ denotes directly choos-
ing a constant c as the coefficient for all samples and
its results are optimal ones selected through grid search
within c ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. ‘Original NTK’ denotes
the computation of the NTK by mixing samples randomly
chosen from all classes to determine interpolation coeffi-
cients. ‘Class-aware NTK’ denotes the approach we pro-
pose, which involves computing NTK separately for each
class to determine interpolation coefficients.

As we can see, directly employing a constant will harm
the performance because it incorrectly assumes that evolu-
tion processes of all samples are the same. ‘Original NTK’,

which computes NTK by mixing samples, shows some im-
provement, especially for datasets with fewer classes like
CIFAR10. However, for datasets with a larger number of
classes like Caltech, it exhibits only marginal improvement
due to a lack of ability to model the evolution of different
classes. The results highlight the advantage of our proposed
class-aware method in modeling the evolution process.

Figure 2. Performance comparison under different interpolation
strategies.

C.3. Network Width

The width of the model backbone is fixed, but the hidden
layer width of the classification head MLP can be adjusted.
We evaluate the impact of different hidden layer widths on
performance, and for the convenience of comparison, we
set both two hidden layers to the same width, as shown in
Fig. 3. As we can see, with the increase in the width of
the hidden layers, the accuracy of the rank also improves.
It indicates that, as the network width increases, the cal-
culation condition of the NTK matrix gradually approach
the required theoretical assumption, leading to the improve-
ment of prediction precision. To balance computation cost
and performance, we set the widths of two hidden layers to
be 1024 and 2048.

Figure 3. Performance comparison under different MLP hidden
layer width.

C.4. Logit Predictions for Different Classes

In Fig. 3 and Fig. 6 of the main paper, we have demon-
strated the accuracy of LEAD in predicting logits for the

dataset through comparison with prior arts. In this section,
we provide visualization results for more detailed compari-
son. As shown in Fig. 4, we present the differences between
the logits predicted by LEAD and the actual values obtained
after fine-tuning, focusing on six classes of the VOC2007
dataset. We can observe that the distribution of predicted
logits closely aligns with the actual results across six cate-
gories, further highlighting the precision of our dynamical
equation-based approach in capturing logit evolution for ac-
curate ranking sequences.

D. Different Measurements of Transferability

Apart from utilizing weighted Kendall’s tau (τw), here we
employ various measurement metrics of the rank correlation
to assess the performance of our method LEAD. These eval-
uation metrices include Kendall’s tau (τ), weighted Pear-
son’s correlation (rw), and top-k relative accuracy (Rel-k).

Table 1. Performance comparison under different measurement
metrics of rank correlation assessment on Caltech [9], CIFAR10
[16], and VOC2007 [8] datasets using self-supervised model zoo.

Dataset Method τw τ rw Rel-1 Rel-3

Caltech

PACTran [7] 0.622 0.455 0.457 1.000 1.000
SFDA [24] 0.523 0.424 0.627 0.995 1.000
ETran [10] 0.405 0.455 0.410 0.990 0.992
PED [18] 0.614 0.530 0.675 0.995 1.000

LEAD (Ours) 0.780 0.758 0.851 1.000 1.000

CIFAR10

PACTran [7] 0.477 0.485 0.497 1.000 1.000
SFDA [24] 0.619 0.545 0.558 1.000 1.000
ETran [10] 0.606 0.515 0.422 0.999 1.000
PED [18] 0.673 0.606 0.645 1.000 1.000

LEAD (Ours) 0.713 0.667 0.792 1.000 1.000

VOC2007

PACTran [7] 0.620 0.485 0.413 0.995 1.000
SFDA [24] 0.568 0.424 0.636 0.998 0.998
ETran [10] 0.376 0.455 0.468 0.974 0.998
PED [18] 0.583 0.484 0.708 0.998 1.000

LEAD (Ours) 0.723 0.788 0.847 0.998 1.000

Rel-k represents the ratio between the optimal fine-tuning
accuracy within the models ranked in the top-k and the best
fine-tuning accuracy across all models. To evaluate the ro-
bustness of transferability metrics across different measure-
ments, we conduct experiments using self-supervised CNN
models on Caltech, CIFAR10, and VOC2007 datasets, as
shown in Tab. 1. The results show that τw is highly cor-
related with other metrics, and it can assign larger weights
to models in higher ranking, which we are concerned with.
Therefore, following [18, 21, 24], we employ τw in the main
paper to evaluate performance. Meanwhile, our LEAD con-
sistently outperforms prior arts such as PACTran, SFDA,
ETran, and PED across the aforementioned measurements,
highlighting the superior performance of LEAD.

E. Ground-truth Results
We obtained the ground-truth results after model fine-tuning
which employs a grid-search strategy, following the imple-
mentation of [18, 24]. More details on this process are avail-
able in Sec. 4 of the main paper. In Tab. 2 and 3, we present
the ground-truth results of 12 supervised pre-trained models
and 12 self-supervised pre-trained models across 10 down-
stream tasks.

References
[1] Yuki Markus Asano, Christian Rupprecht, and Andrea

Vedaldi. Self-labelling via simultaneous clustering and rep-
resentation learning. arXiv, 2019. 6

[2] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and
Matthijs Douze. Deep clustering for unsupervised learning
of visual features. In ECCV, pages 132–149, 2018. 6

[3] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learn-
ing of visual features by contrasting cluster assignments. In
NeurIPS, pages 9912–9924, 2020. 6

[4] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In ICML, 2020. 6

[5] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad
Norouzi, and Geoffrey E Hinton. Big self-supervised mod-
els are strong semi-supervised learners. In NeurIPS, pages
22243–22255, 2020. 6

[6] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He.
Improved baselines with momentum contrastive learning.
arXiv, 2020. 6

[7] Nan Ding, Xi Chen, Tomer Levinboim, Soravit Changpinyo,
and Radu Soricut. Pactran: Pac-bayesian metrics for estimat-
ing the transferability of pretrained models to classification
tasks. In ECCV, pages 252–268. Springer, 2022. 4

[8] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. IJCV, 88:303–338, 2010. 4

[9] Li Fei-Fei. Learning generative visual models from few
training examples. In CVPR workshop, 2004. 4

[10] Mohsen Gholami, Mohammad Akbari, Xinglu Wang,
Behnam Kamranian, and Yong Zhang. Etran: Energy-based
transferability estimation. In ICCV, pages 18613–18622,
2023. 4

[11] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch,
Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-
laghi Azar, et al. Bootstrap your own latent-a new approach
to self-supervised learning. In NeurIPS, pages 21271–21284,
2020. 6

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
pages 770–778, 2016. 5

[13] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In CVPR, pages 9729–9738, 2020. 6

Figure 4. Comparison of the average prediction for final state logits between LEAD and Ground-truth results (obtain after fully fine-tuning)
on six classes of VOC2007 dataset.

Table 2. The ground-truth results of the 12 supervised pre-trained models on 10 downstream tasks.

Supervised Food Caltech Flowers Cars CIFAR100 DTD CIFAR10 Pets SUN397 VOC2007
ResNet-34 [12] 81.99 91.15 95.20 88.63 81.94 72.96 96.12 93.50 61.02 84.60
ResNet-50 [12] 84.45 91.98 96.26 89.09 82.80 74.72 96.28 93.88 63.54 85.80

ResNet-101 [12] 85.58 92.38 96.53 89.47 84.88 74.80 97.39 93.92 63.76 85.68
ResNet-152 [12] 86.28 93.10 96.86 89.88 85.66 76.44 97.53 94.42 64.82 86.32

DenseNet-121 [14] 84.99 91.50 97.02 89.34 82.75 74.18 96.45 93.07 63.26 85.28
DenseNet-161 [14] 87.13 93.13 97.59 89.62 84.98 76.21 97.48 94.35 64.25 85.69
DenseNet-169 [14] 85.84 92.51 97.32 89.02 84.26 74.72 96.77 93.62 64.10 85.77
DenseNet-201 [14] 86.71 93.14 97.10 89.44 84.88 76.04 97.02 94.03 64.57 85.67

MNet-A1 [27] 71.35 89.34 95.39 72.58 72.04 70.12 92.59 91.08 56.56 81.06
MobileNetV2 [23] 81.12 88.64 96.20 86.44 78.11 71.72 94.74 91.28 60.29 82.80

Googlenet [25] 79.30 90.85 95.76 87.76 79.84 72.53 95.54 91.38 59.89 82.58
InceptionV3 [26] 81.76 92.75 95.73 87.74 81.49 72.85 96.18 92.14 59.98 83.84

[14] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In CVPR, pages 4700–4708, 2017. 5

[15] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neu-
ral tangent kernel: Convergence and generalization in neural
networks. In NeurIPS, 2018. 1, 2

[16] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 4

[17] Junnan Li, Pan Zhou, Caiming Xiong, and Steven CH Hoi.
Prototypical contrastive learning of unsupervised representa-
tions. arXiv, 2020. 6

[18] Xiaotong Li, Zixuan Hu, Yixiao Ge, Ying Shan, and Ling-
Yu Duan. Exploring model transferability through the lens
of potential energy. In ICCV, pages 5429–5438, 2023. 4

[19] Sebastian Mika, Gunnar Ratsch, Jason Weston, Bernhard
Scholkopf, and Klaus-Robert Mullers. Fisher discriminant
analysis with kernels. In Neural networks for signal pro-
cessing IX: Proceedings of the 1999 IEEE signal processing
society workshop (cat. no. 98th8468), pages 41–48, 1999. 2

[20] Mohamad Amin Mohamadi and Danica J. Sutherland. A
fast, well-founded approximation to the empirical neural tan-
gent kernel. In ICML, 2022. 2

[21] Michal Pándy, Andrea Agostinelli, Jasper Uijlings, Vittorio
Ferrari, and Thomas Mensink. Transferability estimation us-
ing bhattacharyya class separability. In CVPR, pages 9172–
9182, 2022. 4

[22] Douglas A Reynolds et al. Gaussian mixture models. Ency-
clopedia of biometrics, 741(659-663), 2009. 2

[23] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In CVPR, pages 4510–4520,
2018. 5

[24] Wenqi Shao, Xun Zhao, Yixiao Ge, Zhaoyang Zhang, Lei
Yang, Xiaogang Wang, Ying Shan, and Ping Luo. Not all
models are equal: Predicting model transferability in a self-
challenging fisher space. In ECCV, pages 286–302, 2022.
4

[25] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Table 3. The ground-truth results of the 12 self-supervised pre-trained models on 10 downstream tasks.

Self-Supervised Food Caltech Flowers Cars CIFAR100 DTD CIFAR10 Pets SUN397 VOC2007
BYOL [11] 85.44 91.90 96.80 89.83 83.86 76.37 96.98 91.48 63.69 85.13

Deepclusterv2 [2] 87.24 91.16 97.05 90.16 84.84 77.31 97.17 90.89 66.54 85.38
Infomin [28] 78.82 80.86 95.81 86.90 70.89 73.74 96.72 90.92 57.67 81.41
InsDis [30] 76.47 77.21 93.63 80.21 69.08 66.40 93.08 84.58 51.62 76.33

MoCov1 [13] 77.21 79.68 94.32 82.19 71.23 67.36 84.15 85.26 53.83 77.94
MoCov2 [6] 77.15 82.76 95.12 85.55 71.27 72.56 96.48 89.06 56.28 78.32
PCLv1 [17] 77.70 88.60 95.62 87.15 79.44 73.28 86.42 88.93 58.36 91.91
PCLv2 [17] 80.29 87.52 95.87 85.56 79.84 69.30 96.55 88.72 58.82 81.85
Selav2 [1] 86.37 90.53 96.22 89.85 84.36 76.03 96.85 89.61 65.74 85.52

SimCLRv1 [4] 82.20 90.94 95.33 89.98 84.49 73.97 97.09 88.53 63.46 83.29
SimCLRv2 [5] 82.23 88.58 95.39 88.82 78.91 94.71 96.22 89.18 60.93 83.08

SWAV [3] 87.22 89.49 97.11 89.81 83.78 76.68 96.81 90.59 66.10 85.06

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In CVPR, pages 1–9, 2015. 5

[26] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception ar-
chitecture for computer vision. In CVPR, pages 2818–2826,
2016. 5

[27] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-
net: Platform-aware neural architecture search for mobile.
In CVPR, pages 2820–2828, 2019. 5

[28] Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan,
Cordelia Schmid, and Phillip Isola. What makes for good
views for contrastive learning? In NeurIPS, pages 6827–
6839, 2020. 6

[29] Jason Weston, Chris Watkins, et al. Support vector machines
for multi-class pattern recognition. In Esann, pages 219–
224, 1999. 2

[30] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin.
Unsupervised feature learning via non-parametric instance
discrimination. In CVPR, pages 3733–3742, 2018. 6

	. Theoretical Proof
	. Implementation Details
	. More Ablation Study and Visualization
	. Initial State Observation
	. Different Interpolation Strategies
	. Network Width
	. Logit Predictions for Different Classes

	. Different Measurements of Transferability
	. Ground-truth Results

