
LEAD: Exploring Logit Space Evolution for Model Selection

Supplementary Material

In this supplementary material, we first present theoreti-
cal proof of our approach. Next, we introduce implementa-
tion details about LEAD and conduct more ablation studies
for our approach to validate its effectiveness. Finally, we
provide performance comparisons under different measure-
ments and fine-tuning results of the ground-truth.

A. Theoretical Proof
Below, we will provide detailed proof of the theoretical re-
sults presented in the methodology section.
Notation. First, We recall the notation that we used in the
main paper as well as this appendix:
{X ,Y} denotes the downstream dataset. F denotes the
logit function. η denotes the learning rate. l denotes root
mean square of network widths. Φ denotes NTK matrix
when l approaching infinite. I denotes the identity matrix.
To simplify the notation, · denotes both dot product and
scalar multiplication, e·, ·2 denotes both scalar and matrix
power operations, and d×

d· denotes both differentiation of
scalar functions and the Jacobian matrix of vector functions.
Dynamical Equation. Subsequently, we provide the proof
for obtaining the continuous dynamical equation in Eq. (5)
of the main paper through the limit approximation method.
Conclusion 1. Consider an infinite-width neural network
F and a downstream dataset T = {X ,Y}. The evolution
process of the output logits Ft(X ) will follow the following
differential equation:

dFt

dt
= −η · Φ · dLt

dFt
, F0 = loginit. (1)

Proof. We need to consider the variation trend of F . There-
fore, we calculate its derivative at time t according to the
definition:

dFt(X )

dt
= lim

∆t→0

Ft+∆t(X )−Ft(X )

∆t

= lim
∆t→0

F (X , θt+∆t)−F (X , θt)

∆t
.

(2)

Through Taylor’s theorem, we obtain the asymptotic series
decomposition of F concerning the variation of θ:

F (X , θt+∆t) = F (X , θt) +
dF (X , θt)

dθ
(θt+∆t − θt)

+O
(
(θt+∆t − θt)

2
)
,

(3)
where O(·) denotes a infinitesimal quantity which has the
same order with ·, describing the remainder of the asymp-
totic series. Meanwhile, according to the optimization of

the gradient descent, we can determine the equivalent ef-
fects in corresponding continuous time:

θt+∆t − θt = −η · dL (F (X , θt) ,Y)

dθ
·∆t,

O
(
(θt+∆t − θt)

2
)
= O

(
η2 · dLt

dθ
· dLt

dθ
·∆t2

)
= O

(
(∆t)

2
)
.

(4)

Combining Eq. (3) and Eq. (4), we obtain the asymptotic
series decomposition of F concerning the variation of t:

F (X , θt+∆t)−F (X , θt)

=
dF (X , θt)

dθ
(θt+∆t − θt) +O

(
(θt+∆t − θt)

2
)

=− η · dF (X , θt)

dθ
· dL (F (X , θt) ,Y)

dθ
∆t+O

(
(∆t)

2
)
.

(5)
Combining Eq. (2) and Eq. (5) and employing the property
of O(·), we can use limit approximation, discarding the re-
mainder terms with a limit value of 0, to determine the value
of the derivative:

dFt(X )

dt
= lim

∆t→0
−η · dF (X , θt)

dθ
· dL (F (X , θt) ,Y)

dθ

+O
(
(∆t)

2
)
/∆t

= −η · dF (X , θt)

dθ
· dL (F (X , θt) ,Y)

dθ

= −η · dFt

dθ
· dLt

dθ
.

(6)
where the last line simplifies the notation for convenience.
Through the chain rule, we have:

dFt

dt
= −η · dLt

dFt
·
(
dFt

dθ
· dFt

dθ

)
. (7)

Finally, through the definition and the constant-preserving
property of the NTK [15], we obtain the dynamical equation
with its initial value condition:

dFt

dt
= −η · Φ · dLt

dFt
, F0 = loginit. (8)

Closed-form Solution. Finally, we solve the ordinary dif-
ferential equation (ODE) in Eq. (8) through separation of
variables and integration along the time dimension. As a
commonly used scene in theoretical analysis, we consider



the case where L is Mean Squared Error loss. And we can
obtain concise closed-form solution as shown in Eq. (6) of
the main paper:

Conclusion 2. Consider the case where L is MSE loss. The
solution of logits Ft(X ) to the equation presented in Eq. (8)
can be expressed as follows:

E (Ft (X )) =
(
I− e−ηΦ·t)Y + e−ηΦ·t · loginit. (9)

Proof. Due to dLt

dFt
= Ft − Y , we have:

dFt

dt
= −η · Φ · (Ft − Y) , F0 = loginit. (10)

In order to transform both sides of Eq. (10) into independent
differentials, we first introduce an integrating factor eηΦt:

eηΦt dFt = −ηΦ · eηΦt (Ft − Y) dt

⇔ eηΦt dFt + ηΦ · eηΦtFt dt = ηΦ · eηΦt · Y dt.
(11)

Through the differential properties of composite functions,
the left-hand side of Eq. (11) is equivalent to the differential
of a composite function:

eηΦt dFt + ηΦ · eηΦtFt dt

= eηΦt dFt + Ft de
ηΦt = d

(
Ft · enΦt

)
.

(12)

Combining Eq. (11) and Eq. (12), we get the following
equation whose left and right sides are determined by the
differential of independent composite functions:

d
(
Ft · enΦt

)
= Y d

(
eηΦt

)
. (13)

By integrating over the time dimension t, we have:

Ft · enΦt|t0 = Y · eηΦt|t0
⇔ Ft · enΦt −F0 = Y · (eηΦt − I).

(14)

Substituting the initial condition in Eq. (10), we obtain the
solution to the dynamical equation:

Ft (X ) =
(
I− e−ηΦ·t)Y + e−ηΦ·t · loginit. (15)

Since the constant-preserving property of Φ requires taking
the expectation over the randomly initialized part of F , our
results need to take the expectation as well:

E (Ft (X )) =
(
I− e−ηΦ·t)Y + e−ηΦ·t · loginit. (16)

B. Implementation Details
The implementation of our method are presented in the sec-
tion of methodology and experiments. Additionally, we
present more detailed information and the pseudocode of
the overall algorithm in this section.
Classification Algorithm. In the experiments and ablation
study section of the main paper, we have explained the rea-
sons for choosing the SVM algorithm as classification al-
gorithm to obtain loginit. Here, we will provide a detailed

introduction to the Multi-class SVM. The original SVM is a
binary classifier, that can only handle two classes problems.
However, for multiclass problems, we can utilize the One-
vs-Rest (OvR) strategy [29]. For a problem with K classes,
we train K different binary classifiers, with each classifier
specifically addressing one class, treating it as the positive
class, and considering all other classes as negative. For a
given sample, predictions are made using these classifiers
and the prediction values are normalized to obtain the pre-
dicted probabilities (i.e., logits) for K classes.
Calculation of NTK. For the computation of the NTK,
we employ the approximation algorithm proposed in [20].
Specifically, we concatenate the model backbone with the
classification head, a randomly initialized MLP (with two
hidden layers of width 1024 and 2048). The combination of
these two parts constitutes F to output logits. Subsequently,
we calculate the NTK using the following equation:

Φi,j(X ,X ) =

[
∇θ

K∑
k=1

F (k) (xi, θ)

][
∇θ

K∑
k=1

F (k) (xj , θ)

]
(17)

where Φi,j denotes the element of i-th row and j-th column
in Φ. xi denotes i-th sample of X . K denotes the out-
put dimension of F , F (k) denotes the k-th output dimen-
sion and ∇ is only utilized on the MLP for efficiency. The
computation method in Eq. (17) reduces the computational
cost of the NTK. Meanwhile, [20] provides both theoretical
proof and experimental validation that the eigenvalue range
obtained through this approximation is close to that of the
original computation method in [15].
Pseudocode. We provide the pseudocode for our LEAD to
demonstrate the complete computation procedure.

C. More Ablation Study and Visualization
C.1. Initial State Observation

To capture the observation of loginit, we feed features and
labels of downstream datasets into a classifier that can out-
put the probability of each class. We evaluate several com-
monly used machine learning algorithms SVM [29], LDA
[19], and GMM [22], comparing their impact on perfor-
mance. As shown in Fig. 1, it’s noteworthy that, whatever
the classifier employed, direct utilization of loginit fails to
yield satisfactory results due to overlooking the training dy-
namics. Conversely, the application of LEAD consistently
improves all results to exceed the prior SOTA. This demon-
strates that LEAD does not rely on a specific classifier and
has uniform applicability to different classifier selections.

C.2. Different Interpolation Strategies

In our method, we use eigenvalues of the class-aware NTK
matrix to determine the interpolation coefficient. In this
section, we implement other strategies for comparison in



Algorithm 1: The algorithm of our method LEAD
Input: Downstream dataset {X ,Y}, with K classes; Model zoo

{Ψi}mi=1 with their backbone {fi}mi=1; The sample size
hyper-meter S for class-aware decomposition; The time
hyper-parameter t.

Output: The transferability score {Pi}mi=1 for each model in the
model zoo and the predicted rank.

1 for Ψi in Model zoo do
2 Encode images X to feature embeddings and feed features

and corresponding labels into the classification algorithm C
to obtain initial state logits:

3 Z = fi(X ), loginit = C(Z,Y);
4 Concatenate a randomly initialized MLP h as a classifica-

tion head after its backbone f and combine them as logit
function F = h ◦ f .

5 for k in range(K) do
6 Select S samples Xk := {xki

}Si=1 from k-th class.
7 Compute the NTK matrix for this class:

8 Φu,v(Xk,Xk) =
[
∇θ

∑K
j=1 F(j) (xku , θ)

]
·

9
[
∇θ

∑K
j=1 F(j) (xkv , θ)

]
;

10 for 1 ≤ u, v ≤ K.
11 Employ eigenvalue decomposition to Φ(Xk,Xk) and

obtain the mean of eigenvalues λ.
12 We can get the prediction value of the final state logits

of samples belonging to this class:
E (Ft (x)) =

(
I− e−λ·t

)
y + e−λ·t · loginit(x);

13 for x belonging to the k-th class.
14 end
15 Feed the predicted final state logits Ft (X ) and ground-

truth label Y into the Cross-Entropy loss to obtain the
score Pi for the model Ψi.

16 end
17 Rank models {Ψi}mi=1 according to their scores {Pi}mi=1.

Figure 1. Performance comparison of our method under different
classifier selection to compute loginit.

Fig. 2. Specifically, ‘Constant’ denotes directly choos-
ing a constant c as the coefficient for all samples and
its results are optimal ones selected through grid search
within c ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. ‘Original NTK’ denotes
the computation of the NTK by mixing samples randomly
chosen from all classes to determine interpolation coeffi-
cients. ‘Class-aware NTK’ denotes the approach we pro-
pose, which involves computing NTK separately for each
class to determine interpolation coefficients.

As we can see, directly employing a constant will harm
the performance because it incorrectly assumes that evolu-
tion processes of all samples are the same. ‘Original NTK’,

which computes NTK by mixing samples, shows some im-
provement, especially for datasets with fewer classes like
CIFAR10. However, for datasets with a larger number of
classes like Caltech, it exhibits only marginal improvement
due to a lack of ability to model the evolution of different
classes. The results highlight the advantage of our proposed
class-aware method in modeling the evolution process.

Figure 2. Performance comparison under different interpolation
strategies.

C.3. Network Width

The width of the model backbone is fixed, but the hidden
layer width of the classification head MLP can be adjusted.
We evaluate the impact of different hidden layer widths on
performance, and for the convenience of comparison, we
set both two hidden layers to the same width, as shown in
Fig. 3. As we can see, with the increase in the width of
the hidden layers, the accuracy of the rank also improves.
It indicates that, as the network width increases, the cal-
culation condition of the NTK matrix gradually approach
the required theoretical assumption, leading to the improve-
ment of prediction precision. To balance computation cost
and performance, we set the widths of two hidden layers to
be 1024 and 2048.

Figure 3. Performance comparison under different MLP hidden
layer width.

C.4. Logit Predictions for Different Classes

In Fig. 3 and Fig. 6 of the main paper, we have demon-
strated the accuracy of LEAD in predicting logits for the



dataset through comparison with prior arts. In this section,
we provide visualization results for more detailed compari-
son. As shown in Fig. 4, we present the differences between
the logits predicted by LEAD and the actual values obtained
after fine-tuning, focusing on six classes of the VOC2007
dataset. We can observe that the distribution of predicted
logits closely aligns with the actual results across six cate-
gories, further highlighting the precision of our dynamical
equation-based approach in capturing logit evolution for ac-
curate ranking sequences.

D. Different Measurements of Transferability

Apart from utilizing weighted Kendall’s tau (τw), here we
employ various measurement metrics of the rank correlation
to assess the performance of our method LEAD. These eval-
uation metrices include Kendall’s tau (τ ), weighted Pear-
son’s correlation (rw), and top-k relative accuracy (Rel-k).

Table 1. Performance comparison under different measurement
metrics of rank correlation assessment on Caltech [9], CIFAR10
[16], and VOC2007 [8] datasets using self-supervised model zoo.

Dataset Method τw τ rw Rel-1 Rel-3

Caltech

PACTran [7] 0.622 0.455 0.457 1.000 1.000
SFDA [24] 0.523 0.424 0.627 0.995 1.000
ETran [10] 0.405 0.455 0.410 0.990 0.992
PED [18] 0.614 0.530 0.675 0.995 1.000

LEAD (Ours) 0.780 0.758 0.851 1.000 1.000

CIFAR10

PACTran [7] 0.477 0.485 0.497 1.000 1.000
SFDA [24] 0.619 0.545 0.558 1.000 1.000
ETran [10] 0.606 0.515 0.422 0.999 1.000
PED [18] 0.673 0.606 0.645 1.000 1.000

LEAD (Ours) 0.713 0.667 0.792 1.000 1.000

VOC2007

PACTran [7] 0.620 0.485 0.413 0.995 1.000
SFDA [24] 0.568 0.424 0.636 0.998 0.998
ETran [10] 0.376 0.455 0.468 0.974 0.998
PED [18] 0.583 0.484 0.708 0.998 1.000

LEAD (Ours) 0.723 0.788 0.847 0.998 1.000

Rel-k represents the ratio between the optimal fine-tuning
accuracy within the models ranked in the top-k and the best
fine-tuning accuracy across all models. To evaluate the ro-
bustness of transferability metrics across different measure-
ments, we conduct experiments using self-supervised CNN
models on Caltech, CIFAR10, and VOC2007 datasets, as
shown in Tab. 1. The results show that τw is highly cor-
related with other metrics, and it can assign larger weights
to models in higher ranking, which we are concerned with.
Therefore, following [18, 21, 24], we employ τw in the main
paper to evaluate performance. Meanwhile, our LEAD con-
sistently outperforms prior arts such as PACTran, SFDA,
ETran, and PED across the aforementioned measurements,
highlighting the superior performance of LEAD.

E. Ground-truth Results
We obtained the ground-truth results after model fine-tuning
which employs a grid-search strategy, following the imple-
mentation of [18, 24]. More details on this process are avail-
able in Sec. 4 of the main paper. In Tab. 2 and 3, we present
the ground-truth results of 12 supervised pre-trained models
and 12 self-supervised pre-trained models across 10 down-
stream tasks.
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